Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ischemic heart disease (IHD) is one of the world's foremost killers, accounting for 16% of all deaths worldwide. IHD is the main cause of heart failure (HF), as it leads to pathological changes in the heart, improper pumping function and eventual death. Therapeutic interventions usually follow a systemic general strategy for all heart failure subtypes due to the lack of a deep understanding of the disease mechanisms. Hence, HF and IHD therapeutics need groundbreaking concepts to guide the development of a new therapeutics class that tackles the disease at a molecular level. The TRAIN-HEART consortium, a Marie Skłodowska-Curie Actions Innovative Training Network (MSCA-ITN) funded by the European Commission, was established with the goal of filling that gap and developing RNA-based cardiovascular therapeutics. Created in the context of the Horizon 2020 research and innovation program, TRAIN-HEART comprises three key work packages (WPs) focusing on the pathogenesis of heart disease (WP1), the therapeutic potential of RNA therapeutics (WP2), and the development of new efficient delivery systems (WP3). Fifteen international early stage researchers (ESRs) from multiple complementary scientific disciplines were recruited to collaborate with a network of PIs from nine academic and eight non-academic partners in various disciplines to fully harness their collective potential for the betterment of HF treatment. This article provides an overview of the benefits of being part of an MSCA-ITN, with its different training and networking opportunities, maximizing ESRs' potential and broadening collaborative research possibilities. Finally, it describes what was like to do a PhD during the COVID-19 pandemic, with all the uncertainty and concern attached to it. Luckily, TRAIN-HEART stood out as a proactive network, finding new initiatives and alternatives to promote scientific and personal development. By bringing together leading academic teams, (biotech) companies, and highly motivated researchers, TRAIN-HEART is expanding scientific horizons and accelerating future development of effective RNA-based therapies to treat IHD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809146PMC
http://dx.doi.org/10.3389/fcvm.2023.1228160DOI Listing

Publication Analysis

Top Keywords

heart failure
12
rna therapeutics
8
ischemic heart
8
heart disease
8
heart
6
therapeutics
5
train-heart
5
harnessing power
4
power rna
4
therapeutics treating
4

Similar Publications

Heart failure (HF) remains one of the leading causes of 30-day hospital readmissions, presenting a major challenge to healthcare systems worldwide. This comprehensive review synthesizes recent evidence on effective strategies to reduce readmission rates through patient education, self-care interventions, and systemic reforms. Structured education-particularly when reinforced postdischarge through methods like teach-back, tele-coaching, and home visits-has consistently demonstrated improved self-management, symptom recognition, and quality of life.

View Article and Find Full Text PDF

Rationale: There are insufficient data to inform the management of central sleep apnea (CSA) in patients with heart failure (HF) with reduced ejection fraction (HFrEF). Nocturnal oxygen therapy (NOT) has been postulated to benefit CSA patients with HFrEF, but has not been rigorously studied. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.

View Article and Find Full Text PDF

Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.

View Article and Find Full Text PDF

Aims: Several diuretic strategies, including furosemide iv boluses (FB) or continuous infusion (FC), are used in acute heart failure (AHF).

Methods And Results: We systematically searched phase 3 randomized clinical trials (RCTs) evaluating diuretic regimens in admitted AHF patients within 48 hours and irrespective of clinical stabilization. We calculated the odds ratio (OR) of FC or FB plus another diuretic (sequential nephron blockade, SNB) compared to FB alone on 24-hour weight loss (WL) and worsening renal function (WRF), with a random-effects model with inverse variance weighting.

View Article and Find Full Text PDF