98%
921
2 minutes
20
The global outbreak of the COVID-19 pandemic has indisputably wreaked havoc on societies worldwide, compelling the scientific community to seek urgently needed therapeutic agents with low-cost and low-side effect profiles. Numerous approaches have been investigated in the quest to prevent or treat COVID-19, but many of them exhibit unwelcome side effects, such as dysfunctional viral immune responses and inflammation. Herein, we present the preparation of solid natural human pulmonary alveolar epithelial cell (ATII) membrane-coated PLGA NPs (PLGA NPs@ATII-M), which demonstrate remarkable affinity and competitiveness to neutralize the SARS-CoV-2 S1 protein-coated NPs (SCMMA NPs-S1), which are employed as a surrogate for coronavirus particles. In addition, we first considered the antifouling properties of these types of NPs, and we found that this membrane-coated NP formulation boasts excellent antifouling capabilities, which serve to protect their neutralization properties out of shielding by protein coronas in blood circulation. Moreover, this formulation is easily prepared and stored with a low-cost profile and exhibits good specificity, high targeting efficiency, and potentially side effect avoiding, thus making it a highly promising candidate for COVID-19 treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00936 | DOI Listing |
Appl Environ Microbiol
September 2025
Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina, USA.
Disinfectant wipes are widely used to reduce microbial contamination on surfaces, yet there is limited information on how viruses are physically removed or chemically inactivated during wiping. This study aimed to address this gap by comparing the contributions of physical removal and chemical inactivation to overall disinfection efficacy. Glass and vinyl coupons were contaminated with SARS-CoV-2 surrogates, bovine coronavirus (BCoV), or human coronavirus OC43, at an initial titer of 5-6 log TCID/surface with 5% soil load.
View Article and Find Full Text PDFBiomacromolecules
September 2025
School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States.
The COVID-19 pandemic has demonstrated the need for rapid, flexible, and readily adaptable treatment options for future pandemic preparedness. Due to the speed at which viruses like SARS-CoV-2 mutate, the customary approach of using highly specific monoclonal antibodies as neutralization therapies is challenging, given their size, production complexity, and cost. Here, we leveraged rational protein design to create fusion proteins from small, antibody-mimetic proteins, Designed Ankyrin Repeat Proteins (DARPins) and a self-assembling hexameric coiled coil (CC-HEX).
View Article and Find Full Text PDFJ Virol Methods
September 2025
Laboratorio de Inmunología, Centro de Investigación en Alimentación y Desarrollo, A.C. Hermosillo, Sonora, Mexico. Electronic address:
Bispecific antibodies (bsAbs) offer an alternative to monoclonal antibody (mAb) cocktails for addressing the loss of efficacy due to the rapid emergence of SARS-CoV-2 mutants. The structure and specificity of the parental antibodies influence the development of a highly neutralizing bsAb. To design an effective bsAb, the recognition of 44 single-chain fragment variable (scFv) antibodies against variants of SARS-CoV-2 was evaluated, along with an assessment of their ability to competitively bind to the receptor-binding domain (RBD) compared to the most potent neutralizing mAbs.
View Article and Find Full Text PDFVirus Res
September 2025
Pennsylvania Department of Agriculture, Pennsylvania Veterinary Laboratory, Harrisburg, PA 17110, USA. Electronic address:
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is capable of infecting multiple species through human-to-animal spillover. Human to animal spillovers have been documented both in domestic and wild animal species. Due to close contact in shared households, pet dogs may be at increased risk for contracting the SARS-CoV-2 virus from infected individuals in the same household.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
The conjugation of proteins to the outer membranes of liposomes is a standard procedure used in bioanalytical and drug delivery approaches. Herein, we describe the development of a liposome-based surrogate assay for the quantification of SARS-CoV-2 neutralizing antibodies. Taking into consideration differences in amino acid sequences within the receptor-binding domain (RBD) of SARS-CoV-2 Spike proteins derived from five selected variants of concern (VoC), we studied the impact of coupling chemistries on physicochemical properties and antigenicity.
View Article and Find Full Text PDF