98%
921
2 minutes
20
The prediction of patient disease risk via computed tomography (CT) images and artificial intelligence techniques shows great potential. However, training a robust artificial intelligence model typically requires large-scale data support. In practice, the collection of medical data faces obstacles related to privacy protection. Therefore, the present study aims to establish a robust federated learning model to overcome the data island problem and identify high-risk patients with postoperative gastric cancer recurrence in a multicentre, cross-institution setting, thereby enabling robust treatment with significant value. In the present study, we collect data from four independent medical institutions for experimentation. The robust federated learning model algorithm yields area under the receiver operating characteristic curve (AUC) values of 0.710, 0.798, 0.809, and 0.869 across four data centres. Additionally, the effectiveness of the algorithm is evaluated, and both adaptive and common features are identified through analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811238 | PMC |
http://dx.doi.org/10.1038/s41467-024-44946-4 | DOI Listing |
J Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
RSC Med Chem
August 2025
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University 4.5 Km the Ring Road Ismailia 41522 Egypt.
Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability.
View Article and Find Full Text PDFStat Biosci
August 2024
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
Large-scale genomics data combined with Electronic Health Records (EHRs) illuminate the path towards personalized disease management and enhanced medical interventions. However, the absence of "gold standard" disease labels makes the development of machine learning models a challenging task. Additionally, imbalances in demographic representation within datasets compromise the development of unbiased healthcare solutions.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
September 2025
Early diagnosis of Parkinson's disease (PD) is crucial for timely treatment and disease management. Recent studies link PD to impaired facial muscle control, manifesting as "masked face" symptoms, offering a novel diagnostic approach through facial expression analysis. However, data privacy concerns and legal restrictions have resulted in significant "data silos", hindering data sharing and limiting the accuracy and generalizability of existing diagnostic models due to small, localized datasets.
View Article and Find Full Text PDFJ Imaging Inform Med
September 2025
Heart Center, Department of Geriatrics, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
The growing heterogeneity of cardiac patient data from hospitals and wearables necessitates predictive models that are tailored, comprehensible, and safeguard privacy. This study introduces PerFed-Cardio, a lightweight and interpretable semi-federated learning (Semi-FL) system for real-time cardiovascular risk stratification utilizing multimodal data, including cardiac imaging, physiological signals, and electronic health records (EHR). In contrast to conventional federated learning, where all clients engage uniformly, our methodology employs a personalized Semi-FL approach that enables high-capacity nodes (e.
View Article and Find Full Text PDF