Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Determinations of micro/nanoplastics (MNPs) in environmental samples are essential to assess the extent of their presence in the environment and their potential impact on ecosystems and human health. With the aim to provide a sensitive method with simplified pretreatment steps, cooling-assisted solid-phase microextraction (CA-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) is proposed as a new approach to quantify mass concentrations of MNPs in water and soil samples. The herein proposed CA-SPME method offers the unique advantage of integrating the thermal decomposition of MNPs and enrichment of signature compounds into one step. Poly(methyl methacrylate) (PMMA) was used as a model substance to verify the method performance in this work. Theoretical insights demonstrated that pyrolysis is the rate-determining step during the extraction process and that PMMA is effectively decomposed at 350 °C with an estimated incubation time of 13 min. Eight compounds were identified in the pyrolysis products by CA-SPME-GC-MS with the use of a DVB/CAR/PDMS coating, wherein methyl methacrylate was considered as the best indicator and dimethyl 2-methylenesuccinate was selected as the confirmation compound. Under the optimized conditions, the proposed method exhibited wide linearity (0.5-2000 μg for water and 5-1000 μg for soil) and high sensitivity, with limits of detection of 0.014 and 0.28 μg for water and soil, respectively. Finally, the proposed method was successfully applied for determinations of PMMA MNPs in real water and soil samples with satisfactory recoveries attained. The method only required the employment of a filter membrane for water analysis, while soil samples were analyzed directly without any pretreatment. The solvent-free approach, straightforward operation, and high sensitivity of the proposed method show great potential for the analysis of MNPs in different environmental samples.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c05316DOI Listing

Publication Analysis

Top Keywords

water soil
12
soil samples
12
proposed method
12
polymethyl methacrylate
8
cooling-assisted solid-phase
8
solid-phase microextraction
8
coupled gas
8
gas chromatography-mass
8
chromatography-mass spectrometry
8
mnps environmental
8

Similar Publications

Nonlinear Scaling of Water-Ion Interactions and Dynamics in Alkaline Solutions.

J Phys Chem Lett

September 2025

Pacific Northwest National Laboratory, Richland, Washington 99354, United States.

Water-ion interactions govern the physicochemical properties of aqueous solutions, impacting the structure of the hydrogen bonding network and ion diffusivities. To elucidate these effects under alkaline conditions relevant to diverse application spaces, we examined NaOD-DO solutions using two-dimensional infrared spectroscopy (2D-IR), small-angle X-ray scattering (SAXS), and nuclear magnetic resonance spectroscopy (NMR). Vibrational energy transfer between the donor anion SeCN, used as a 2D-IR probe, and the acceptor anion OD was used to track the average separation distance of ions in the DO solutions, while SAXS and NMR experiments measured the structure of the bulk DO solvent.

View Article and Find Full Text PDF

The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.

View Article and Find Full Text PDF

Focus on China's non-ferrous metal industry: Emission characteristics of heavy metals and their impacts on water, soil, and air.

J Hazard Mater

September 2025

Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; National Key Laboratory of Uranium Resources Prospecting and Nuclear Remote Sensing, East China University of Technology, Nanchang 330000, China.

Despite China being the world's largest producer of non-ferrous metals, a comprehensive understanding of heavy metal pollution from this industry is still lacking. This study examines the spatial coupling between heavy metal (Cd, Hg, As, Pb, and Cr) emission hotspots in China's non-ferrous metal mining industry (NFMMI), non-ferrous metal smelting and processing industry (NFMSPI) and environmental media- sensitive hotspots (water body density, cultivated land concentration, and atmospheric PM2.5) to characterize the multi-media pollution risks.

View Article and Find Full Text PDF

Construction and verification of soil heavy metal establishment identification method based on dual-threshold of magnetic susceptibility.

J Hazard Mater

September 2025

Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Soil and Water Conservation and Ecological Restoration of Jiangsu Province, College of Forestry & College of Soil and Water Conservation, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China.

Pollutants from industrial emissions and traffic accumulate in urban soils as road dust, carrying heavy metals (HMs) posing ecological and health risks. Magnetic susceptibility (MS), sensitive to ferromagnetic minerals, enables rapid HM contamination assessment. This study developed the Modified Dual-Threshold MS Evaluation Plot for Soil Contamination (M-Plot) using χ and χ% indices.

View Article and Find Full Text PDF

PFAS in plant-biosolids-soil systems: Distribution, fractionation, and effects on soil microbial communities.

J Hazard Mater

September 2025

Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:

This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.

View Article and Find Full Text PDF