Genome Mining of Cinnamoyl-Containing Nonribosomal Peptide Gene Clusters Directs the Production of Malacinnamycin.

Org Lett

State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cinnamoyl-containing nonribosomal peptides (CCNPs) constitute a unique family of actinobacterial secondary metabolites that display a broad spectrum of biological activities. Here, we present a genome mining approach targeting cyclase and is isomerase to discover new CCNPs, which led to the identification of 207 putative CCNP gene clusters from public bacterial genome databases. After strain prioritization, a novel class of CCNP-type glycopeptides named malacinnamycin was identified. A plausible biosynthetic pathway for malacinnamycin was deduced by bioinformatics analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.4c00052DOI Listing

Publication Analysis

Top Keywords

genome mining
8
cinnamoyl-containing nonribosomal
8
gene clusters
8
mining cinnamoyl-containing
4
nonribosomal peptide
4
peptide gene
4
clusters directs
4
directs production
4
production malacinnamycin
4
malacinnamycin cinnamoyl-containing
4

Similar Publications

Recombinant DNA technology is widely used to produce industrially and pharmaceutically important proteins. In silico analysis, performed before executing wet lab experiments has been greatly helpful in this connection. A shift in protein analysis has been observed over the past decade, driven by advancements in bioinformatics databases, tools, software, and web servers.

View Article and Find Full Text PDF

Gene hunting and semi-rational design of β-xylosidase from Aspergillus aculeatus for highly efficient hydrolysis of astragaloside.

J Biotechnol

September 2025

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, NO. 1, Wenyuan Road, Nanjing 210023, People's Republic of China. Electronic address:

Cycloastragenol (CA), the triterpenoid aglycone of astragaloside (ASI), is a telomerase activator and potential anti-aging drug with broad application prospects. Due to the rapid increase of its market demand in recent years, efficient production of CA has attracted increasing attention. In this study, the novel β-xylosidase XylO2 from Aspergillus aculeatus was identified through genome mining.

View Article and Find Full Text PDF

Legumes are essential for agriculture and food security. Biotic and abiotic stresses pose significant challenges to legume production, lowering productivity levels. Most legumes must be genetically improved by introducing alleles that give pest and disease resistance, abiotic stress adaptability, and high yield potential.

View Article and Find Full Text PDF

Genome mining and characterization of a heme-dependent enzyme catalyzing intermolecular Nitrogen-Nitrogen bond formation in hydrazinosuccinic acid biosynthesis.

Synth Syst Biotechnol

December 2025

Department of Pharmacy of the Fourth Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China.

Nitrogen-nitrogen (N-N) bond-forming enzymes are rare but play vital roles in both primary and secondary metabolism. Guided by a nitric oxide synthase (NOS)-based genome mining strategy, we report the discovery and characterization of a new heme-dependent enzyme system that catalyzes intermolecular N-N bond formation. Using both in vivo and in vitro reconstitution approaches, we demonstrated that a protein complex, comprising a heme enzyme and a 2[4Fe-4S] ferredoxin partner, mediates the coupling of the α-amine group of l-aspartate with inorganic nitrogen oxide species, such as nitrite or nitric oxide, to generate hydrazinosuccinic acid, a key biosynthetic precursor in several natural product pathways.

View Article and Find Full Text PDF

Genome-wide association study reveals candidate loci for resistance to anthracnose in blueberry.

G3 (Bethesda)

September 2025

Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA.

Anthracnose, caused by Colletotrichum gloeosporioides, poses a significant threat to blueberries, necessitating a deeper understanding of the genetic mechanisms underlying resistance to develop efficient breeding strategies. Here, we conducted a genome-wide association study on 355 advanced selections of southern highbush blueberry from the University of Florida Blueberry Breeding and Genomics Program. Visual scores and image analyses were used for assessing disease severity.

View Article and Find Full Text PDF