98%
921
2 minutes
20
Carbonic anhydrase IX is an important biomarker to fight hypoxic tumours in both initial and metastatic stages of many forms of cancer. Overexpression of hCA IX in the hypoxic environment, has an active role in pH maintenance and makes the hCA IX a better target for the inhibitors targeting specific types of cancer stages. Being a member of the carbonic anhydrase family and having sixteen isoforms, it is important to have a selective inhibition of hCA IX to limit the disruption in the biological and metabolic pathways where other isoforms of hCA are localised and to avoid the other toxicity and adverse effects we try to find selective hCA IX inhibitors from a natural derivative. In the process of finding selective hCA inhibitors we developed a pharmacophore model based on existing inhibitors with IC values of less than 50 nm, which is then validated with the external decoy set and used for database searching followed by virtual screening to identify the hits based on the pharmacophore fit score and RMSD. Molecular docking studies were performed to identify protein ligand interaction and molecular dynamics simulation studies to analyse the stability of the complex and DFT studies were carried out. The initial screening yielded 43 hits with the RMSD value less than 1, which when subjected to docking exhibited very good interaction with key residues ZN301, HIS94, HIS96 and HIS119. The top 4 compounds in the molecular dynamics simulation studies for 100 ns provided useful insights on the stability of the complex and the DFT studies confirmed the energy variation between HOMO and LUMO is within an acceptable range. An average binding score of -7.8 Kcal mol for the lead compounds and high stability margin in the dynamics study concludes that these lead compounds demonstrated outstanding potential for hCA IX inhibitory action theoretically and that further experimental studies for selective inhibition are inevitable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801456 | PMC |
http://dx.doi.org/10.1039/d3ra08618f | DOI Listing |
Eur J Med Chem
August 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243032, Anhui, PR China. Electronic address:
Cancer remains a leading global cause of mortality, with treatment efficacy often compromised by drug resistance, highlighting the urgent need for novel targeted therapies. The enzyme fructose-2,6-bisphosphatase 4 (PFKFB4) governs glycolytic flux by modulating fructose-2,6-bisphosphate (F2,6BP) levels. PFKFB4 overexpression has been observed in various cancers and correlates with tumor growth, aggressiveness, and poor prognosis.
View Article and Find Full Text PDFCrit Rev Anal Chem
September 2025
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India.
Neurodegenerative disorders (NDD) i.e., dementia of the Alzheimer's type, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a rising worldwide epidemic driven by aging populations and characterized by progressive neuronal impairment.
View Article and Find Full Text PDFComput Biol Chem
August 2025
Department of Green Chemistry, National Research Centre, Dokki, P.O. Box 12622, Cairo, Egypt. Electronic address:
This review meticulously examines the development, design, and pharmacological assessment of both well known antiviral and antihypertensive medications all time employing new chemical techniques and structure-based drug design to design and synthesize vital therapeutic entities such as aliskiren (renin inhibitor), captopril (a2-ACE-Inhibitor), dorzolamide (inhibitor of carbonic anhydrase) the review demonstrates initial steps regarding the significance of stereoselective synthesis, metal chelating pharmacophores, and rational molecular properties. More importantly, protease inhibitors (i.e.
View Article and Find Full Text PDFBioorg Med Chem
September 2025
Goel Institute of Pharmacy and Sciences, Lucknow, Uttar Pradesh 226028, India. Electronic address:
N-methyl-d-aspartate (NMDA) receptors are validated druggable targets for the treatment of Alzheimer's and other associated neurological conditions, particularly in individuals with disabilities. Considering the excitotoxicity associated with NMDA receptors, which leads to neuronal damage, cognitive impairment, and limitations of current therapeutic regimens, better therapeutic candidates are required. One of the validated drug discovery approaches is computer-assisted drug discovery, supplemented by molecular docking, mechanics, and dynamics.
View Article and Find Full Text PDFChem Biodivers
September 2025
Department of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Türkiye.
Breast cancer continues to pose a significant global health burden, highlighting the urgent need for novel chemotherapeutic agents with improved selectivity and reduced toxicity. In this study, we rationally designed and synthesized six novel amide-bridged triazole-coumarin hybrids (5a-f) based on the known anticancer potential of both pharmacophores. The synthesized compounds were evaluated for their cytotoxicity in MCF-7 and MDA─MB─231 breast cancer cell lines and non-tumorigenic MCF-10A cells.
View Article and Find Full Text PDF