Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radiomic analysis has emerged as a valuable tool for extracting quantitative features from medical imaging data, providing in-depth insights into various contexts and diseases. By employing methods derived from advanced computational techniques, radiomics quantifies textural information through the evaluation of the spatial distribution of signal intensities and inter-voxel relationships. In recent years, these techniques have gained considerable attention also in the field of pituitary tumors, with promising results. Indeed, the extraction of radiomic features from pituitary magnetic resonance imaging (MRI) images has been shown to provide useful information on various relevant aspects of these diseases. Some of the key topics that have been explored in the existing literature include the association of radiomic parameters with histopathological and clinical data and their correlation with tumor invasiveness and aggressive behavior. Their prognostic value has also been evaluated, assessing their role in the prediction of post-surgical recurrence, response to medical treatments, and long-term outcomes. This review provides a comprehensive overview of the current knowledge and application of radiomics in pituitary tumors. It also examines the current limitations and future directions of radiomic analysis, highlighting the major challenges that need to be addressed before a consistent integration of these techniques into routine clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816809PMC
http://dx.doi.org/10.3390/jcm13020336DOI Listing

Publication Analysis

Top Keywords

radiomic analysis
12
pituitary tumors
12
current knowledge
8
radiomic
5
pituitary
4
analysis pituitary
4
tumors current
4
knowledge future
4
future perspectives
4
perspectives radiomic
4

Similar Publications

Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.

Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Non-invasive prediction of invasive lung adenocarcinoma and high-risk histopathological characteristics in resectable early-stage adenocarcinoma by [18F]FDG PET/CT radiomics-based machine learning models: a prospective cohort Study.

Int J Surg

September 2025

Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).

Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.

View Article and Find Full Text PDF

Objectives: Lymph node metastasis (LNM) is an important factor affecting the stage and prognosis of patients with lung adenocarcinoma. The purpose of this study is to explore the predictive value of the stacking ensemble learning model based on F-FDG PET/CT radiomic features and clinical risk factors for LNM in lung adenocarcinoma, and elucidate the biological basis of predictive features through pathological analysis.

Methods: Ninety patients diagnosed with lung adenocarcinoma who underwent PET/CT were retrospectively analyzed and randomly divided into the training and testing sets in a 7:3 ratio.

View Article and Find Full Text PDF

Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.

Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.

View Article and Find Full Text PDF