98%
921
2 minutes
20
Cadmium (Cd) is a common environmental pollutant and occupational toxicant that seriously affects various mammalian organs, especially the kidney. Iron ion is an essential trace element in the body, and the disorder of iron metabolism is involved in the development of multiple pathological processes. An iron overload can induce a new type of cell death, defined as ferroptosis. However, whether iron metabolism is abnormal in Cd-induced nephrotoxicity and the role of ferroptosis in Cd-induced nephrotoxicity need to be further elucidated. Sprague Dawley male rats were randomly assigned into three groups: a control group, a 50 mg/L CdCl2-treated group, and a 75 mg/L CdCl2-treated group by drinking water for 1 month and 6 months, respectively. The results showed that Cd could induce renal histopathological abnormalities and dysfunction, disrupt the mitochondria's ultrastructure, and increase the ROS and MDA content. Next, Cd exposure caused GSH/GPX4 axis blockade, increased FTH1 and COX2 expression, decreased ACSL4 expression, and significantly decreased the iron content in proximal tubular cells or kidney tissues. Further study showed that the expression of iron absorption-related genes , , , , and decreased in proximal tubular cells or kidneys after Cd exposure, while TFRC and iron export-related gene did not change significantly. Moreover, Cd exposure increased gene expression and decreased gene expression in the duodenum. Finally, NAC or Fer-1 partially alleviated Cd-induced proximal tubular cell damage, while DFO and Erastin further aggravated Cd-induced cell damage. In conclusion, our results indicated that Cd could cause iron deficiency and chronic kidney injury by interfering with the iron metabolism rather than typical ferroptosis. Our findings suggest that an abnormal iron metabolism may contribute to Cd-induced nephrotoxicity, providing a novel approach to preventing kidney disease in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815742 | PMC |
http://dx.doi.org/10.3390/ijms25020763 | DOI Listing |
Eur J Heart Fail
September 2025
School of Cardiovascular & Metabolic Medicine and Science, James Black Centre, King's College London British Heart Foundation Centre of Excellence, London, UK.
Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.
Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.
J Cell Mol Med
September 2025
Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, Bangladesh.
Ferroptosis, a controlled cell death influenced by iron-dependent lipid peroxidation, presents potential therapeutic targets for cancer treatment due to its unique molecular pathways and potential drug resistance. Natural compounds, such as polyphenols, flavonoids, terpenoids and alkaloids, can influence ferroptosis via important signalling pathways, such as Nrf2/Keap1, p53, and GPX4. These are promising for combinational therapy due to their ability to cause ferroptotic death in cancer cells, exhibit tumour-specific selectivity and reduce systemic toxicity.
View Article and Find Full Text PDFFungal Biol
October 2025
Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir
Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.
View Article and Find Full Text PDFJ Nutr Biochem
September 2025
Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Wuhan 430062, PR CHINA
Increasing evidence indicates that ferroptosis contributes to the occurrence and development of metabolic dysfunction-associated fatty liver disease (MAFLD). This study aimed to investigate the improvement effect of plant sterol ester of α-linolenic acid (PS-ALA) on ferroptosis in hepatocytes and further elucidate the underlying molecular mechanism, focusing on the regulation of Nrf2 signaling. We found that PS-ALA ameliorated liver iron overload and reduced ROS generation and lipid peroxides (MDA and 4-HNE) production both in mice fed a high-fat diet and HepG2 cells induced by oleic acid/erastin.
View Article and Find Full Text PDFJ Control Release
September 2025
Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland. Electronic address:
Iron-carbohydrate complexes (ICCs) are widely used nanomedicines to treat iron deficiency anemia, yet their intracellular fate and the mechanisms of action underlying their differences in treatment outcomes remain poorly understood. Here, we thus performed a comprehensive dynamic characterization of two structurally distinct ICCs - iron sucrose (IS) and ferric carboxymaltose (FCM) - in primary human macrophages, key cells to the iron metabolism. By employing innovative correlative microscopy techniques, elemental analysis, and in vitro pharmacokinetic profiling, we demonstrate that the uptake, intracellular trafficking, and biodegradation of ICCs depend on their physicochemical properties.
View Article and Find Full Text PDF