98%
921
2 minutes
20
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L [CK], 0.6 mmol·L [T1], 1.2 mmol·L [T2], and 1.8 mmol·L [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (), the lycopene -cyclase gene (), and the zeaxanthin cyclooxygenase gene () in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10814949 | PMC |
http://dx.doi.org/10.3390/foods13020223 | DOI Listing |
Front Plant Sci
August 2025
Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
The utilization of arbuscular mycorrhizal fungi (AMF) and spp. correlates with improved plant nutrition and the stimulation of systemic plant defenses in response to pathogen challenges. Nonetheless, studies examining the effects of AMF colonization and the foliar application of the isolate Tvd44 on viral infection are limited.
View Article and Find Full Text PDFFood Sci Biotechnol
October 2025
Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi, 832000 Xinjiang China.
The current work aimed to investigate the effects of fermentation of , , and on the physicochemical, electronic sensory evaluation, and flavour characteristics of heat-sterilized tomato juice (HTJ). The results indicated that LAB fermentation significantly decreased the pH, sucrose, and glucose, and lactic acid was increased. E-nose and tongue analyses revealed that the response to organic sulfides, terpenoids, and sourness increased after LAB fermentation HS-SPME-GC-MS and OAV revealed that heat-sterilization resulted a significant loss of aroma compounds (38.
View Article and Find Full Text PDFJ Food Sci Technol
October 2025
Department of Agronomy, Maringa State University/UEM, Colombo Avenue, 5790, Maringa, Parana C.P. 87020-900 Brazil.
Unlabelled: Seaweed extract has been applied in many crops to improve plant growth, mitigate plant stress, and enhance fruit quality. is a macroalgae that is source of phytohormones, minerals, polysaccharides and antioxidant compounds. These elements can enhance food nutritional value, contributing to human health.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai, 200240, China. Electronic address:
Vitamin A deficiency is one of the most severe micronutrient-related health issues worldwide. Tomatoes, a widely cultivated crop for their adaptability, nutritional value, and lycopene content (a beta-carotene precursor), are ideal candidates for biofortification. In this study, CRISPR-mediated knockout mutants (cr-SlLCYe and cr-SlBCH) were generated to enhance the precursor supply to the β-carotene biosynthetic pathway and reduce its degradation.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Horticulture, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Sanya 572025, China. Electronic address:
Maintaining robust plant vigor is essential for sustaining crop productivity, yet the precise roles and molecular underpinnings of G protein γ subunits in this process remain elusive. This study reveals that GGC1 is under selection during tomato domestication, and its mutants exhibit enhanced plant vigor, characterized by superior growth, increased yield, and improved fruit quality. In contrast, triple mutants gga1/ggb1/ggb2 display severely compromised vigor resembling slgb1 mutants lacking the Gβ subunit.
View Article and Find Full Text PDF