Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Maximowicz 1870 is an important medicinal plant mainly distributing in the southeastern coastal region of China. However, the complete chloroplast genome of has never been studied at present. We obtained the complete chloroplast genome of , which was 152,283 bp in length, with a typical quadripartite structure that includes a large single-copy region of 82,229 bp, a small single-copy region of 18,256 bp, and 2 inverted repeat (IR) regions of 25,899 bp. The genome contained 128 unique genes with a GC content of 37%, including 83 protein-coding genes, 37 tRNAs, and 8 rRNAs. Phylogenetic analysis suggested that was closely related to and .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798290PMC
http://dx.doi.org/10.1080/23802359.2024.2305399DOI Listing

Publication Analysis

Top Keywords

complete chloroplast
12
chloroplast genome
12
phylogenetic analysis
8
single-copy region
8
genome
4
genome phylogenetic
4
analysis elaeagnaceae
4
elaeagnaceae fujian
4
fujian southeastern
4
southeastern china
4

Similar Publications

Introduction: Rice is mainly consumed by half of the world's population. The imminent climate change and population growth expected in the next 30 years will outpace the current rice production capacity, posing risks to food and nutrition security in developing nations. One simplified approach to address this challenge is to improve photosynthetic capacity by increasing chlorophyll content in leaves and stems.

View Article and Find Full Text PDF

The complete chloroplast genome of Franch. & Sav. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.

Here, we present the first complete chloroplast genome of (154,018 bp), which exhibits a typical quadripartite structure, including an LSC (83,966 bp), SSC (18,910 bp), and two IRs (25,571 bp each). A total of 133 genes were annotated, with 114 unique genes and 19 duplicated in the IRs. .

View Article and Find Full Text PDF

The complete chloroplast genome of L. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Heze Municipal Bureau of Agriculture and Rural Affairs, Heze, P. R. China.

L. 1753 is a perennial herb of the family Asteraceae, often cultivated as an ornamental flower. The species has also been reported to contain a wide range of phytochemicals and to exhibit diverse pharmacological activities.

View Article and Find Full Text PDF

Repeated loss of plastid NDH during evolution of land plants.

Ann Bot

September 2025

Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.

Background: Advances in DNA sequencing technology have led to a rapid increase in the number of species with organelle genomes and even complete nuclear genomes being sequenced. Thousands of plastid genomes from across all major clades of land plants are now available, and one of the surprising findings is the recurring event of complete or functional loss of genes involved in cyclic electron transport during photosynthesis - the ndh genes that encode subunits of the chloroplast NADH dehydrogenase-like (NDH) complex. Gene loss in non-photosynthetic, heterotrophic plants may be expected, but the increasing number of losses being discovered in autotrophic plants questions the role and potential dispensability of the ndh genes and the entire NDH complex.

View Article and Find Full Text PDF

Comparative analysis of complete chloroplast genomes of and , two commonly used medicinal plants in southern China.

Front Plant Sci

August 2025

Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China.

and , belonging to the genus , are ethnomedicinal plants that contain valuable medicinal and nutritional compounds. However, their medicinal materials are frequently confused in the Chinese medicinal materials market. Moreover, molecular genomic resources for this genus remain limited, which hinders phylogenetic studies.

View Article and Find Full Text PDF