Whole-Transcriptome Sequencing Reveals the Global Molecular Responses and NAC Transcription Factors Involved in Drought Stress in .

Antioxidants (Basel)

Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in . A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in 's response to drought stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10812421PMC
http://dx.doi.org/10.3390/antiox13010094DOI Listing

Publication Analysis

Top Keywords

drought stress
16
nac transcription
12
whole-transcriptome sequencing
8
transcription factors
8
extreme drought
8
differentially expressed
8
drought
5
sequencing reveals
4
reveals global
4
global molecular
4

Similar Publications

Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.

View Article and Find Full Text PDF

Nonexpressor of pathogenesis-related genes 1 (NPR1) is a master regulator of salicylic acid (SA)- facilitated plant hormone signaling and plays a crucial role in plant defense through the activation of systemic acquired resistance (SAR). Although like genes are associated with stress responses in a variety of plant species, no thorough genome-wide investigation of these genes has been undertaken in pearl millet (). This study discovered seven -like genes on four pearl millet chromosomes (Chr1, Chr2, Chr4, and Chr6), which exhibit close affinity to NPRs from other plants and have common gene structures, conserved motifs, and domains.

View Article and Find Full Text PDF

Long non-coding RNAs: Silent contributors to plant survival under abiotic stress.

Biochem Biophys Res Commun

September 2025

Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:

Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.

View Article and Find Full Text PDF

Identification of RAV transcription factors (B3-domain-containing) and functional analysis of OsRAV2 in rice blast and drought stress.

J Plant Physiol

September 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China. Electronic address:

RAV transcription factors play roles in a variety of diverse biological processes. However, their role in rice's response to drought and blast stress remains largely unexplored. In this study, we performed a genome-wide characterization and identification of rice RAV transcription factor family genes.

View Article and Find Full Text PDF