98%
921
2 minutes
20
An experimental study was conducted on how polymer density affects the transport and fate of microplastics in aquatic flows. For the first time, polypropylene (PP), polyethylene (PE), polymethyl methacrylate (PMMA), polyetheretherketone (PEEK), and polyvinyl chloride (PVC) were chemically stained and tested using solute transport techniques and velocities found among rivers in the natural environment (0.016 - 0.361 m/s). The movement of 3D-polymers with densities ranging from 0.9 - 1.4 g/cm³ was quantified in a laboratory flume scaled to simulate open-channel flows in fluvial systems. Except for PP, in most conditions microplastics exhibited similar transport characteristics to solutes regardless of density and established solute transport models were successfully implemented to predict their transport and fate. Mass recoveries and ADE routing model demonstrated microplastic deposition and resuspension was associated with polymer density below critical velocity thresholds ≤ 0.1 m/s. When density becomes the dominant force at these slower velocities, concentrations of denser than water microplastics will be momentarily or permanently deposited in channel beds and microplastics follow the classical Shields sediment transport methodology. This data is the first to provide microplastic suspension and deposition thresholds based on river velocity and polymer density, making a key contribution to research predicting microplastic fate and organismal exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133440 | DOI Listing |
Vector Borne Zoonotic Dis
September 2025
Department of Mechanical Engineering, Yeungnam University, Gyeongsan, Korea.
In view of Corona pandemic, scientists have taken significant efforts to study and recognize the peculiarities of the SARS-CoV-2 outbreak in order to prevent it from spreading. It was discovered that the virus is spreading in many places and nations that have made significant progress in addressing environmental pollution or are not subject to dusty storms. Infections are growing again in the same country, with varied densities of sick persons depending on the weather and windy season.
View Article and Find Full Text PDFSmall
September 2025
National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
Artificial porous polymer coatings are promising for alleviating the side reactions and dendrite growth on Zn anodes. Nevertheless, the low ion transport ability constrains their application under harsh conditions such as thin Zn foil, high current density, and high depth of discharge (DOD). Herein, a 2D active filler is introduced to optimize the Zn migration in porous polymer coating.
View Article and Find Full Text PDFIEEE Nanotechnol Mater Devices Conf
October 2024
Utah State University, Logan, UT 84322 USA.
Extinction in thin polymer films containing nanoparticles is important to photovoltaics, sensors, and interconnects. Extinction measured in 1-millimeter-thin films containing plasmonic nanoparticles increased with nanoparticle density to levels higher than predicted. Yet, enhancement of extinction was not measured in <100-nanometer-thin films containing high-density plasmonic nanoparticles.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
Nanostructuring, which shortens lithium-ion diffusion lengths, can help facilitate pseudocapacitive behavior in some battery materials. Here, nanostructured LiNiCoAlO (NCA), with porosity and decreased crystallite size compared to commercial bulk NCA, was synthesized using a colloidal polymer template. Small particles (∼150 nm) were obtained using rapid thermal annealing (RTA), while medium particles (∼300 nm) were obtained with conventional heating.
View Article and Find Full Text PDFDalton Trans
September 2025
Laboratory for New Ceramics, Department of Ceramic Engineering, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India.
Polymer-derived ceramics are a versatile class of multifunctional materials synthesized the high-temperature treatment of a preceramic polymer. In this work, we report the synthesis of a vanadium carbide-embedded carbonaceous hybrid by pyrolyzing a modified preceramic polymer incorporating vanadium acetylacetonate in a polysilsesquioxane followed by hydrofluoric acid etching. The structural and microscopic characterisation confirmed the uniform distribution of nanoparticulate vanadium carbide in the matrix.
View Article and Find Full Text PDF