98%
921
2 minutes
20
The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model. GGM7 could be essential for initiating bisexual cones. DNA methylation reconfiguration in bisexual cones affects the expression of key genes in cone development, including PcDAL12, PcDAL10, PcNEEDLY, and PcHDG5. Auxin likely plays an important role in the development of female structures of bisexual cones. This study unveils the potential mechanisms responsible for bisexual cone formation in conifers and may shed light on the evolution of bisexuality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799047 | PMC |
http://dx.doi.org/10.1038/s42003-024-05786-6 | DOI Listing |
Commun Biol
January 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model.
View Article and Find Full Text PDFNew Phytol
October 2017
LPCV, CEA, CNRS, INRA, Université Grenoble-Alpes, BIG, 38000, Grenoble, France.
Flowering plants evolved from an unidentified gymnosperm ancestor. Comparison of the mechanisms controlling development in angiosperm flowers and gymnosperm cones may help to elucidate the mysterious origin of the flower. We combined gene expression studies with protein behaviour characterization in Welwitschia mirabilis to test whether the known regulatory links between LEAFY and its MADS-box gene targets, central to flower development, might also contribute to gymnosperm reproductive development.
View Article and Find Full Text PDFPlant Cell
February 2017
Department of Biology, KU Leuven, B-3001 Leuven, Belgium
The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones.
View Article and Find Full Text PDFNew Phytol
February 2016
National Engineering Laboratory for Forest Tree Breeding, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants of Ministry of Education, College of biological sciences and technology, Beijing Forestry University, Beijing, 100083, China.
The development of reproductive structures in gymnosperms is still poorly studied because of a lack of genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution. To extend our understanding of the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays.
View Article and Find Full Text PDFAm J Bot
January 2011
Departamento de Ecología Evolutiva, Instituto de Ecología, México, D. F. 04510 México.
Premise Of Study: Bisexuality (male and female function in one structure) has been reported as a key innovation of angiosperms. Although there are several reports of "teratological" bisporangiate (bisexual) cones in gymnosperms, there have been none on the viability of their ovules and pollen. Analyses of the development and arrangement of female and male structures on bisporangiate cones of Pinus johannis enables us to gain insight on the origin of bisexuality in seed plants, for both angiosperms and gymnosperms.
View Article and Find Full Text PDF