Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aim: Human stem cells from the apical papilla (SCAPs) are an appealing stem cell source for tissue regeneration engineering. Circular RNAs (circRNAs) are known to exert pivotal regulatory functions in various cell differentiation processes, including osteogenesis of mesenchymal stem cells. However, few studies have shown the potential mechanism of circRNAs in the odonto/osteogenic differentiation of SCAPs. Herein, we identified a novel circRNA, circ-ZNF236 (hsa_circ_0000857) and found that it was remarkably upregulated during the SCAPs committed differentiation. Thus, in this study, we showed the significance of circ-ZNF236 in the odonto/osteogenic differentiation of SCAPs and its underlying regulatory mechanisms.

Methodology: The circular structure of circ-ZNF236 was identified via Sanger sequencing, amplification of convergent and divergent primers. The proliferation of SCAPs was detected by CCK-8, flow cytometry analysis and EdU incorporation assay. Western blotting, qRT-PCR, Alkaline phosphatase (ALP) and Alizarin red staining (ARS) were performed to explore the regulatory effect of circ-ZNF236/miR-218-5p/LGR4 axis in the odonto/osteogenic differentiation of SCAPs in vitro. Fluorescence in situ hybridization, as well as dual-luciferase reporting assays, revealed that circ-ZNF236 binds to miR-218-5p. Transmission electron microscopy (TEM) and mRFP-GFP-LC3 lentivirus were performed to detect the activation of autophagy.

Results: Circ-ZNF236 was identified as a highly stable circRNA with a covalent closed loop structure. Circ-ZNF236 had no detectable influence on cell proliferation but positively regulated SCAPs odonto/osteogenic differentiation. Furthermore, circ-ZNF236 was confirmed as a sponge of miR-218-5p in SCAPs, while miR-218-5p targets LGR4 mRNA at its 3'-UTR. Subsequent rescue experiments revealed that circ-ZNF236 regulates odonto/osteogenic differentiation by miR-218-5p/LGR4 in SCAPs. Importantly, circ-ZNF236 activated autophagy, and the activation of autophagy strengthened the committed differentiation capability of SCAPs. Subsequently, in vivo experiments showed that SCAPs overexpressing circ-ZNF236 promoted bone formation in a rat skull defect model.

Conclusions: Circ-ZNF236 could activate autophagy through increasing LGR4 expression, thus positively regulating SCAPs odonto/osteogenic differentiation. Our findings suggested that circ-ZNF236 might represent a novel therapeutic target to prompt the odonto/osteogenic differentiation of SCAPs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/iej.14021DOI Listing

Publication Analysis

Top Keywords

odonto/osteogenic differentiation
28
differentiation scaps
16
circ-znf236
13
scaps
13
stem cells
12
differentiation
11
cells apical
8
apical papilla
8
committed differentiation
8
structure circ-znf236
8

Similar Publications

Background: The aim to this study was to explore the effect of p75NTR on the mineralization and development of maxillofacial processes. Moreover, we tried to elaborate the potential mechanism of p75NTR's effect on the odontogenic or osteogenic differentiation ability of neural crest cells (s).

Methods: We used gene p75NTR knockout (p75NTR) mice and wildtype (p75NTR) mice embryos as a model.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are short non-coding RNAs essential for biological functions that control the process of translation of mRNA into protein. The discovery of miRNAs in mesenchymal stem cells (MSCs), especially in odontogenic tissues and dental follicles, has not been fully characterised. This study focused on characterising dental follicle stem cells (DFSCs) in terms of their ability to proliferate and differentiate into osteoblasts using qRT-PCR (miR-203, miR-125 and miR-21) and immunohistochemistry (OCT4 and CD133).

View Article and Find Full Text PDF

Injectable Hydrogel as Intracanal Medication for Root Canal Disinfection.

J Dent Res

May 2025

State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Due to the complex anatomical structures of the root canal, thorough intracanal disinfection has always been challenging in endodontic treatment. Existing intracanal medicaments exhibit limitations such as low permeability and suboptimal antibacterial performance. Thus, an intracanal medicament that combines excellent operating performance with potent antibacterial properties is required.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs) play a crucial role in cell differentiation through epigenetic regulation of gene expression. In human dental pulp cells, we have identified miRNA-27a being upregulated under inflammatory conditions. Here, we aimed to examine whether (i) overexpression of miRNA-27a in human dental pulp stem cells (hDPSCs) enhances their odonto/osteoblastic differentiation via Wnt and bone morphogenetic protein signaling; and (ii) hDPSCs overexpressing miRNA-27a promote new bone formation in vivo.

View Article and Find Full Text PDF

Aim: Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation.

Methodology: hDPSCs were harvested from human dental pulp tissues.

View Article and Find Full Text PDF