Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The form factor (FF) is a pulse shape indicator that corresponds to the fraction of pulse pressure added to diastolic blood pressure to estimate the time-averaged mean arterial pressure (MAP). Our invasive study assessed the FF value and variability at the radial and femoral artery levels and evaluated the recommended fixed FF value of 0.33.

Methods And Results: Hemodynamically stable patients were prospectively included in 2 intensive care units. FF was documented at baseline and during dynamic maneuvers. A total of 632 patients (64±16 years of age, 66% men, MAP=81±14 mm Hg) were included. Among them, 355 (56%) had a radial catheter and 277 (44%) had a femoral catheter. The FF was 0.34±0.06. In multiple linear regression, FF was influenced by biological sex (<0.0001) and heart rate (=0.04) but not by height, weight, or catheter location. The radial FF was 0.35±0.06, whereas the femoral FF was 0.34±0.05 (=0.08). Both radial and femoral FF were higher in women than in men (<0.05). When using the 0.33 FF value to estimate MAP, the error was -0.4±4.0 mm Hg and -0.1±2.9 mm Hg at the radial and femoral level, respectively, and the MAP estimate still demonstrated high accuracy and good precision even after changes in norepinephrine dose, increase in positive end-expiratory pressure level, fluid administration, or prone positioning (n=218).

Conclusions: Despite higher FF in women and despite interindividual variability in FF, using a fixed FF value of 0.33 yielded accurate and precise estimations of MAP. This finding has potential implications for blood pressure monitoring devices and the study of pulse wave amplification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11056177PMC
http://dx.doi.org/10.1161/JAHA.123.031969DOI Listing

Publication Analysis

Top Keywords

pulse shape
8
shape indicator
8
arterial pressure
8
radial femoral
8
variability pulse
4
indicator estimating
4
estimating arterial
4
pressure
4
pressure radial
4
femoral arteries
4

Similar Publications

Carbon fiber nanotip electrodes (CFNEs) are crucial for electrochemical recordings of neurotransmission release in confined spaces, such as synapses and intracellular measurements. However, fabricating CFNEs with small surface area to minimize noise remains challenging due to inconsistent tip size control, low reproducibility, and low fabrication success rate. Here, we present a reliable, user-friendly method with high reproducibility and success rate for precise CFNE fabrication using microscopy-guided electrochemical etching of cylindrical carbon fiber microelectrodes in a potassium hydroxide droplet.

View Article and Find Full Text PDF

The Essence of Nature Can be the Simplest (6)-Lifespan: Determined by Extracellular Fenton Chemistry.

Chem Biodivers

September 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan & Yunnan Key Laboratory of Basic Research and Innovative Application for Green Biological Production, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunm

Understanding the determinants of lifespan is a central objective in biology. Lifespan is shaped by dynamic, stage-specific changes in metabolism, energy allocation, and genome integrity. Heart rate serves as a physiological marker that reflects both life stage and metabolic state.

View Article and Find Full Text PDF

A novel medium-current (up to 20 mA), low normalized beam emittance (<1 π mm mrad) electron cyclotron resonance microwave H+ ion source has been developed at the Center for Energy Research in Budapest, Hungary. This high-stability design targets an energy ripple below 1% while delivering a continuous or pulsed proton beam with adjustable pulse duration (0.1-10 ms) and frequency (0.

View Article and Find Full Text PDF

Sum-frequency generation vibrational spectroscopy (SFG-VS) has been well-established as a unique spectroscopic probe to interrogate the structure, interaction, and dynamics of molecular interfaces, with sub-monolayer sensitivity and broad applications. Sub-1 cm-1 High-Resolution Broadband SFG-VS (HR-BB-SFG-VS) has shown advantages with high spectral resolution and accurate spectral line shape. However, due to the lower peak intensity for the long picosecond pulse used in achieving sub-wavenumber resolution in the HR-BB-SFG-VS measurement, only molecular interfaces with relatively strong signal have been studied.

View Article and Find Full Text PDF

Microfluidic devices offer more accurate fluid flow control and lower reagent use for uniform nanoparticle synthesis than batch synthesis. Here, we propose a microfluidic device that synthesizes uniform iron oxide nanoparticles (IONPs) for highly efficient intracellular delivery. The 3D-printed device was fabricated, comprising two inlets in the T-shaped channel with an inner diameter of 2 mm, followed by a helical mixing channel with a single outlet.

View Article and Find Full Text PDF