Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapid and label-free detection of very low concentrations of biomarkers in disease diagnosis or therapeutic drug monitoring is essential to prevent disease progression in Point of Care Testing. For this purpose, we propose a multi-purpose optical Bio-Micro-Electro-Mechanical-System (BioMEMS) sensing platform which can precisely measure very small changes of biomolecules concentrations in plasma-like buffer samples. This is realized by the development of an interferometric detection method on highly sensitive MEMS transducers (cantilevers). This approach facilitates the precise analysis of the obtained results to determine the analyte type and its concentrations. Furthermore, the proposed multi-purpose platform can be used for a wide range of biological assessments in various concentration levels by the use of an appropriate bioreceptor and the control of its coating density on the cantilever surface. In this study, the present system is prepared for the identification of digoxin medication in its therapeutic window for therapeutic drug monitoring as a case study. The experimental results represent the repeatability and stability of the proposed device as well as its capability to detect the analytes in less than eight minutes for all samples. In addition, according to the experiments carried out for very low concentrations of digoxin in plasma-like buffer, the detection limit of LOD = 300 fM and the maximum sensitivity of S = 5.5 × 10 AU/M are achieved for the implemented biosensor. The present ultrasensitive multi-purpose BioMEMS sensor can be a fully-integrated, cost-effective device to precisely analyze various biomarker concentrations for various biomedical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10796958PMC
http://dx.doi.org/10.1038/s41598-024-51864-4DOI Listing

Publication Analysis

Top Keywords

multi-purpose biomems
8
point care
8
care testing
8
case study
8
low concentrations
8
therapeutic drug
8
drug monitoring
8
plasma-like buffer
8
concentrations
5
ultrasensitive detection
4

Similar Publications

Rapid and label-free detection of very low concentrations of biomarkers in disease diagnosis or therapeutic drug monitoring is essential to prevent disease progression in Point of Care Testing. For this purpose, we propose a multi-purpose optical Bio-Micro-Electro-Mechanical-System (BioMEMS) sensing platform which can precisely measure very small changes of biomolecules concentrations in plasma-like buffer samples. This is realized by the development of an interferometric detection method on highly sensitive MEMS transducers (cantilevers).

View Article and Find Full Text PDF

Capillary systems are a promising technology for point-of-care microfluidics, since they are pre-programmable and self-powered. This work introduces "off valves" as a key building block for capillaric circuits, providing easy-to-use, multi-purpose valving functionality and autonomous flow control. To this end we present a set of switching valve designs that use trigger channels and liquid input alone to close or open connections between channels in a highly controllable fashion.

View Article and Find Full Text PDF

Image processing is widely growing as a useful tool in biosensing applications. It can be used to convert any camera/microscope into an optical sensor with wide range of capabilities such as monitoring completion of colorimetric reactions, differentiating and counting cells, and tracking motile cells/organisms. However, implementation of image processing in Lab-on-Chip devices is still challenging for researchers with little expertise in this field.

View Article and Find Full Text PDF

A generic label-free microfluidic microobject sorter using a magnetic elastic diverter.

Biomed Microdevices

June 2017

Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada.

Cell sorters play important roles in biological and medical applications, such as cellular behavior study and disease diagnosis and therapy. This work presents a label-free microfluidic sorter that has a downstream-pointing magnetic elastic diverter. Different with most existing magnetic sorters, the proposed device does not require the target microobjects to be intrinsically magnetic or coated with magnetic particles, giving users more flexibility in sorting criteria.

View Article and Find Full Text PDF

When compared to methodologies based on low adhesion or hanging drop plates, droplet microfluidics offers several advantages for the formation and culture of multicellular spheroids, such as the potential for higher throughput screening and the use of reduced cell numbers, whilst providing increased stability for plate handling. However, a drawback of the technology is its characteristic compartmentalisation which limits the nutrients available to cells within an emulsion and poses challenges to the exchange of the encapsulated solution, often resulting in short-term cell culture and/or viability issues. The aim of this study was to develop a multi-purpose microfluidic platform that combines the high-throughput characteristics of multi-phase flows with that of ease of perfusion typical of single-phase microfluidics.

View Article and Find Full Text PDF