98%
921
2 minutes
20
Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10823491 | PMC |
http://dx.doi.org/10.1093/gbe/evae002 | DOI Listing |
Brief Funct Genomics
January 2025
School of Mathematics and Statistics, Henan University of Science and Technology, No. 263 Kaiyuan Avenue, Luolong District, Luoyang, Henan 471000, China.
Background: Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.
Methods: To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).
Results: We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively.
Endocr Connect
September 2025
Dysfunction of several WD40 family proteins causes diverse endocrine diseases. Until recently, MEP50, a WD40 protein, was considered a Gene of Unknown Significance (GUS) because no inherited diseases had been linked to its function. However, genetic inactivation of MEP50 in mouse models or somatic mutations in humans drive oncogenesis in several endocrine-related cancers, including those of the prostate, breast, and uterus.
View Article and Find Full Text PDFNew Phytol
September 2025
Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA.
Understanding the rate and nature of adaptation is crucial for managing biodiversity across our changing landscapes. This perspective synthesizes insights from resistance evolution - a case of rapid, repeated adaptation to extreme human-mediated selection - to reveal how adaptive genetic architectures determine and feedback with evolutionary dynamics. Recent population genomic and quantitative genetic approaches have demonstrated that the extent of genetic parallelism and reliance on de novo vs standing genetic variation can vary with the complexity of genetic architectures.
View Article and Find Full Text PDFJBMR Plus
October 2025
Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, 6009, Australia.
Genome-wide association studies (GWAS) relevant to osteoporosis have identified hundreds of loci; however, understanding how these variants influence the phenotype is complicated because most reside in non-coding DNA sequence that serves as transcriptional enhancers and repressors. To advance knowledge on these regulatory elements in osteoclasts (OCs), we performed Micro-C analysis, which informs on the genome topology of these cells and integrated the results with transcriptome and GWAS data to further define loci linked to BMD. Using blood cells isolated from 4 healthy participants aged 31-61 yr, we cultured OC in vitro and generated a Micro-C chromatin conformation capture dataset.
View Article and Find Full Text PDFIMA Fungus
August 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China Institute of Microbiology, Chinese Academy of Sciences Beijing China.
is a widely consumed edible mushroom and the only species currently cultivated on an industrial scale. Despite its economic importance, its trophic strategy and genomic adaptations remain elusive. Here, we presented high-quality, chromosome-level genome assemblies for two sexually compatible monokaryons (PP78 and PP85) of .
View Article and Find Full Text PDF