Stretching Bonds without Breaking Symmetries in Density Functional Theory.

J Phys Chem Lett

Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kohn-Sham density functional theory (KS-DFT) stands out among electronic structure methods due to its balance of accuracy and computational efficiency. However, to achieve chemically accurate energies, standard density functional approximations in KS-DFT often need to break underlying symmetries, a long-standing "symmetry dilemma". By employing spin densities as the main variables in calculations (rather than total molecular densities, as in KS-DFT), we present an embedding framework in which this symmetry dilemma is understood and partially resolved. The spatial overlap between fragment densities is used as the main ingredient to construct a simple, physically motivated approximation to a universal functional of the fragment densities. This "overlap approximation" is shown to significantly improve semilocal KS-DFT binding energies of molecules without artificially breaking either charge or spin symmetries. The approach is shown to be applicable to covalently bonded molecules and to systems of the "strongly correlated" type.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c03073DOI Listing

Publication Analysis

Top Keywords

density functional
12
functional theory
8
densities main
8
fragment densities
8
stretching bonds
4
bonds breaking
4
breaking symmetries
4
symmetries density
4
functional
4
theory kohn-sham
4

Similar Publications

Background: The CRP-albumin-lymphocyte (CALLY) index has potential clinical value as a novel marker integrating inflammatory, nutritional and immune status in the development of colorectal polyps. This study examined whether gender factors influence the association between CALLY and colorectal polyps; in addition to elucidating whether metabolic pathways mediate this relationship.

Methods: This is a cross-sectional study including 5409 adult health screening participants who completed colonoscopy.

View Article and Find Full Text PDF

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

With approximately 90% of industrial reactions occurring on surfaces, the role of heterogeneous catalysts is paramount. Currently, accurate surface exposure prediction is vital for heterogeneous catalyst design, but it is hindered by the high costs of experimental and computational methods. Here we introduce a foundation force-field-based model for predicting surface exposure and synthesizability (SurFF) across intermetallic crystals, which are essential materials for heterogeneous catalysts.

View Article and Find Full Text PDF

[2,1]-Azaboranaphthalenes represent unique boron-nitrogen (BN) isosteres of naphthalenes, attracting interest for the development of molecules with enhanced therapeutic potency. The existing synthetic strategies are generally two-component reactions with harsh conditions. Here we report an organocatalysed three-component modular synthesis of ring-fused BN isosteres and BN-2,1-azaboranaphthalenes following ring expansion of unstrained cyclic ketones (n = 4-8) via Wolff-type rearrangement.

View Article and Find Full Text PDF