Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-024-01651-7DOI Listing

Publication Analysis

Top Keywords

novel pathogenic
4
pathogenic gene
4
gene variants
4
variants patient
4
patient neisseria
4
neisseria meningitis
4
meningitis diffuse
4
diffuse cutaneous
4
cutaneous hsv-1
4
hsv-1 infection
4

Similar Publications

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF

The emergence of organoid models has significantly bridged the gap between traditional cell cultures/animal models and authentic human disease states, particularly for genetic disorders, where their inherent genetic fidelity enables more biologically relevant research directions and enhances translational validity. This review systematically analyzes established organoid models of genetic diseases across organs (e.g.

View Article and Find Full Text PDF

Salmonella Typhimurium (S. Typhimurium) is one of the most common food-borne diseases, highlighted as the top food-borne bacterial pathogen in the world with a low infectious dose (1 CFU) and high mortality rate. It is commonly associated with numerous foods such as dairy products, protein sources (multiple types of meat, poultry, and eggs), and bakery products.

View Article and Find Full Text PDF

Highly pathogenic avian influenza (HPAI) clade 2.3.4.

View Article and Find Full Text PDF

Visualizing intracellular glycine with two-dye and single-dye ratiometric RNA-based sensors.

Nucleic Acids Res

September 2025

Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, United States.

Glycine is an important metabolite and cell signal in diverse organisms, yet tools to visualize intracellular glycine dynamics have not been developed. In this study, diverse and bright RNA-based glycine biosensors were developed by fusing the architecturally complex glycine riboswitch with Broccoli class fluorogenic aptamers. The brightest sensor with the highest activation, glyS, and its two-dye ratiometric counterpart, Pepper-glyS, allowed for visualization of a drug-induced accumulation of endogenous glycine in live Escherichia colicells.

View Article and Find Full Text PDF