Modeling climate change adaptation for sustainable coastal zones using GIS and AHP.

Environ Monit Assess

Environmental Planning and Development Center, Institute of National Planning, (INP), Cairo, Egypt.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The world is currently confronting one of its biggest environmental challenges: combating climate change. Coastal zones are one of the areas thought to be most sensitive to current and future climate change threats. The paper integrates Remote Sensing (RS), Geographic Information System (GIS) techniques, and Multi-Criteria Decision Analysis (MCDA) to detect vulnerable areas from climate change impacts in coastal zones in order to recommend adaptation systems in new coastal zones that can withstand various climatic changes. The proposed decision-making framework was developed in three phases: 1) climate data collection and processing; 2) Coastal Climate Impact Assessment (CCIA) model development; and 3) implementation and adaptation system selection. The climate data collection and processing phase involves determining the most significant climate change parameters and their indicators that affect coastal zone stability, extracting climatic data indicators from different climate database sources, and prioritizing the selected indicators. The indicators' weights were estimated using the Analytical Hierarchy Process (AHP) through a questionnaire survey shared with experts in climate change impacts. A CCIA model development phase involves the formulation of the proposed model using GIS technique to discover the vulnerable areas according to the most dominant impact. The implementation and adaptation system selection phase involves the application of the framework to Al-Alamein New City in Egypt. A sensitivity analysis was conducted to measure the behavior of several climate change parameters to identify the most critical parameter for climate change in Al-Alamein New City. The results showed that the geology of the region is the most crucial component influenced by climate change. It is capable of producing a very sensitive area in the coastal zone while also taking other factors into account. When creating new urban neighborhoods, the erosion of the shoreline is the least important factor to consider. This is because coastal deterioration is caused by both the influence of metrological data on the region and the impact of human activity. Shoreline deterioration will be reduced if climate conditions are maintained while limiting the impact of human activities. To adapt to the long-term effects of climate change on coastal zones, a combination of soft and hard protection systems should be considered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10788322PMC
http://dx.doi.org/10.1007/s10661-023-12287-2DOI Listing

Publication Analysis

Top Keywords

climate change
40
coastal zones
20
climate
14
phase involves
12
change
10
coastal
9
change coastal
8
vulnerable areas
8
change impacts
8
climate data
8

Similar Publications

Redefining agroecological zones in China to mitigate climate change impacts on maize production.

Mol Plant

September 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

This study introduces Multi-Dimensional Environment (MDE) zoning to enhance maize resilience and improve stagnant yields in China amidst climate change. Utilizing comprehensive environmental and yield data, MDE zoning accurately identifies areas for targeted, climate-adaptive breeding. The tool provides a flexible framework for updates using annual variety testing and daily environmental data, optimizing production and resource allocation.

View Article and Find Full Text PDF

Sugar metabolism is commonly implicated as crucial in the transition between growth and cessation during winter; however, its exact role remains elusive. The evergreen iris (Iris japonica) ceases growth in winter without entering endodormancy, yet it continues to sustain sugar metabolism and transport throughout the season. Here, we elucidate the mechanisms underlying the sugar-mediated growth transition-the shift between growth and cessation-in I.

View Article and Find Full Text PDF

Objective: The food system is a major contributor to the global burden of disease, ecosystem destruction and climate change, posing considerable threats to human and planetary health and economic stability. Evidence based food policy is fundamental to food system transformation globally, nationally and at a local or institutional level. The study aimed to critically review the content of universities' food sustainability (FS) policy documents.

View Article and Find Full Text PDF