98%
921
2 minutes
20
Due to the multifactorial nature of diabetic wounds, the most effective treatments require combinatorial approach. Herein we investigated whether engraftment of a bioengineered three-dimensional dermal derived matrix scaffold (DDMS) in combination with adipose-derived stem cells (ADSs), could accelerate diabetic wound healing. Diabetic animals were randomly planned into the control group, DDMS group, ADS group, and DDMS+ADS group. On days 7, 14, and 21, tissue samples were obtained for stereological, molecular, and tensiometrical assessments. We found that the wound contraction rate, the total volumes of new epidermis and dermis, the numerical densities of fibroblasts and blood vessels, collagen density, and tensiometrical parameters were meaningfully greater in the treated groups than in the control group, and these changes were more obvious in the DDMS+ADS ones (p < 0.05). Moreover, the expression of TGF-β, bFGF, and VEGF genes were considerably upregulated in treated groups compared to the control group and were greater in the DDMS+ADS group (p < 0.05). This is while expression of TNF-α and IL-1β, as well as the numerical densities of neutrophils and macrophages decreased more considerably in the DDMS+ADS group than in the other groups (p < 0.05). Overall, it was found that using both DDMS engraftment and ADS transplantation has more impact on diabetic wound healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tice.2024.102302 | DOI Listing |
Stem Cell Rev Rep
September 2025
Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Malá Hora 4C, Martin, 036 01, Slovakia.
Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.
View Article and Find Full Text PDFWound Repair Regen
September 2025
Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Department of Dermatology, College of Medicine, Imam Mohammad Bin Saud University, Riyadh, Saudi Arabia.
Background: Necklines are a common complaint in patients as they are a sign of aging. Hyaluronic acid (HA) fillers are widely used to address volume loss and linear depressions. HA fillers are safe, effective, and versatile, but their use for necklines is not well-documented in the literature.
View Article and Find Full Text PDFOpen Med (Wars)
August 2025
Department of Burns and Wound Repair, Weifang People's Hospital, Shandong Second Medical University, Weifang, China.
Objective: Hypertrophic scars (HS) are a fibrotic proliferative disorder that results from an abnormal wound healing process, presenting significant challenges for clinical intervention. The primary characteristics of HS include excessive collagen deposition and angiogenesis. In recent years, the study of mesenchymal stem cells (MSCs) and their derived exosomes has emerged as a prominent area of research within the academic community.
View Article and Find Full Text PDFMater Today Bio
October 2025
Radboud University Medical Center, Research Institute for Medical Innovation, Department of Medical BioSciences, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.
Severe scarring is an inevitable consequence of large full-thickness skin wounds, often leading to long-term complications that affect patients' well-being and necessitate extended medical interventions. While autologous split-thickness skin grafts remain the clinical standard for wound treatment, they frequently result in contractures, excessive scarring, and the need for additional corrective procedures. To address these challenges, bioengineered skin substitutes capable of promoting efficient healing while reducing complications are highly desirable.
View Article and Find Full Text PDF