98%
921
2 minutes
20
Background: Intradialytic hypotension (IDH) is a common hemodialysis complication causing adverse outcomes. Despite the well-documented associations of ambient temperatures with fluid removal and pre-dialysis blood pressure (BP), the relationship between ambient temperature and IDH has not been adequately studied.
Methods: We conducted a cohort study at a tertiary hospital in southern Taiwan between 1 January 2016 and 31 October 2021. The 24-h pre-hemodialysis mean ambient temperature was determined using hourly readings from the weather station closest to each patient's residence. IDH was defined using Fall40 [systolic BP (SBP) drop of ≥40 mmHg] or Nadir90/100 (SBP <100 if pre-dialysis SBP was ≥160, or SBP <90 mmHg). Multivariate logistic regression with generalizing estimating equations and mediation analysis were utilized.
Results: The study examined 110 400 hemodialysis sessions from 182 patients, finding an IDH prevalence of 11.8% and 10.4% as per the Fall40 and Nadir90/100 criteria, respectively. It revealed a reverse J-shaped relationship between ambient temperature and IDH, with a turning point around 27°C. For temperatures under 27°C, a 4°C drop significantly increased the odds ratio of IDH to 1.292 [95% confidence interval (CI) 1.228 to 1.358] and 1.207 (95% CI 1.149 to 1.268) under the Fall40 and Nadir90/100 definitions, respectively. Lower ambient temperatures correlated with higher ultrafiltration, accounting for about 23% of the increased IDH risk. Stratified seasonal analysis indicated that this relationship was consistent in spring, autumn and winter.
Conclusion: Lower ambient temperature is significantly associated with an increased risk of IDH below the threshold of 27°C, irrespective of the IDH definition. This study provides further insight into environmental risk factors for IDH in patients undergoing hemodialysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10783262 | PMC |
http://dx.doi.org/10.1093/ckj/sfad304 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.
This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.
Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFJ Refract Surg
September 2025
Department of Refractive Surgery, Shanghai Aier Eye Hospital, Shanghai.
Purpose: To analyze the effects of ablation interruption on ablation depths and clinical refractive outcomes to characterize the impact of ambient temperature changes and ablation interruption on ocular surface temperature (OST) during excimer laser ablation.
Methods: This prospective study was conducted on laser ablations in polymethylmethacrylate (PMMA) plates and porcine corneas to simulate laser in situ keratomileusis (LASIK) treatments using the EX500 laser (Alcon Laboratories, Inc) at ambient temperatures of 18, 20, and 22 °C. Ablation interruption was performed for 1, 2, 3, 4, and 5 seconds at the 10th second of the treatment of -9.
Adv Mater
September 2025
Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
Global water scarcity demands next-generation desalination technologies that transcend the limitations of energy-intensive processes and salt accumulation. Herein, a groundbreaking interfacial solar steam generation system capable of simultaneous hypersaline desalination and ambient energy harvesting is introduced. Through hierarchical hydrogel architecture incorporating a central vertical channel and radial channels with gradient apertures, the design effectively decouples salt transport and water evaporation: solar-driven fluid convection directs water outward for evaporation, while inward salt migration prevents surface crystallization and redistributes excess heat.
View Article and Find Full Text PDF