98%
921
2 minutes
20
Sharing multicenter imaging datasets can be advantageous to increase data diversity and size but may lead to spurious correlations between site-related biological and non-biological image features and target labels, which machine learning (ML) models may exploit as shortcuts. To date, studies analyzing how and if deep learning models may use such effects as a shortcut are scarce. Thus, the aim of this work was to investigate if site-related effects are encoded in the feature space of an established deep learning model designed for Parkinson's disease (PD) classification based on T1-weighted MRI datasets. Therefore, all layers of the PD classifier were frozen, except for the last layer of the network, which was replaced by a linear layer that was exclusively re-trained to predict three potential bias types (biological sex, scanner type, and originating site). Our findings based on a large database consisting of 1880 MRI scans collected across 41 centers show that the feature space of the established PD model (74% accuracy) can be used to classify sex (75% accuracy), scanner type (79% accuracy), and site location (71% accuracy) with high accuracies despite this information never being explicitly provided to the PD model during original training. Overall, the results of this study suggest that trained image-based classifiers may use unwanted shortcuts that are not meaningful for the actual clinical task at hand. This finding may explain why many image-based deep learning models do not perform well when applied to data from centers not contributing to the training set.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3352513 | DOI Listing |
Neural Netw
September 2025
School of Automation and Intelligent Sensing, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, 200240, China; Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
3D shape defect detection plays an important role in autonomous industrial inspection. However, accurate detection of anomalies remains challenging due to the complexity of multimodal sensor data, especially when both color and structural information are required. In this work, we propose a lightweight inter-modality feature prediction framework that effectively utilizes multimodal fused features from the inputs of RGB, depth and point clouds for efficient 3D shape defect detection.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Electrical and Computer Engineering and the Institute of Biomedical Engineering, University of New Brunswick, Fredericton, E3B 5A3, NB, Canada.
Pattern recognition-based myoelectric control is traditionally trained with static or ramp contractions, but this fails to capture the dynamic nature of real-world movements. This study investigated the benefits of training classifiers with continuous dynamic data, encompassing transitions between various movement classes. We employed both conventional (LDA) and deep learning (LSTM) classifiers, comparing their performance when trained with ramp data, continuous dynamic data, and an LSTM pre-trained with a self-supervised learning technique (VICReg).
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
JMIR Med Inform
September 2025
Department of Hepatobiliary and Vascular Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
Background: Primary liver cancer, particularly hepatocellular carcinoma (HCC), poses significant clinical challenges due to late-stage diagnosis, tumor heterogeneity, and rapidly evolving therapeutic strategies. While systematic reviews and meta-analyses are essential for updating clinical guidelines, their labor-intensive nature limits timely evidence synthesis.
Objective: This study proposes an automated literature screening workflow powered by large language models (LLMs) to accelerate evidence synthesis for HCC treatment guidelines.