Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

NSG-SGM3 and NOG-EXL mice combine severe immunodeficiency with transgenic expression of human myeloid stimulatory cytokines, resulting in marked expansion of myeloid populations upon humanization with CD34+ hematopoietic stem cells (HSCs). Humanized NSG-SGM3 mice typically develop a lethal macrophage activation syndrome and mast cell hyperplasia that limit their use in long-term studies (e.g., humanization followed by tumor xenotransplantation). It is currently unclear to what extent humanized NOG-EXL mice suffer from the same condition observed in humanized NSG-SGM3 mice. We compared the effects of human CD34+ HSC engraftment in these two strains in an orthotopic patient-derived glioblastoma model. NSG-SGM3 mice humanized in-house were compared to NOG-EXL mice humanized in-house and commercially available humanized NOG-EXL mice. Mice were euthanized at humane or study endpoints, and complete pathological assessments were performed. A semiquantitative multiparametric clinicopathological scoring system was developed to characterize chimeric myeloid cell hyperactivation (MCH) syndrome. NSG-SGM3 mice were euthanized at 16 weeks after humanization because of severe deterioration of clinical conditions. Humanized NOG-EXL mice survived to the study endpoint at 22 weeks after humanization and showed less-severe MCH phenotypes than NSG-SGM3 mice. Major differences included the lack of mast cell expansion and limited tissue/organ involvement in NOG-EXL mice compared to NSG-SGM3 mice. Engraftment of human lymphocytes, assessed by immunohistochemistry, was similar in the two strains. The longer survival and decreased MCH phenotype severity in NOG-EXL mice enabled their use in a tumor xenotransplantation study. The NOG-EXL model is better suited than the NSG-SGM3 model for immuno-oncology studies requiring long-term survival after humanization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264550PMC
http://dx.doi.org/10.1177/03009858231222216DOI Listing

Publication Analysis

Top Keywords

nog-exl mice
32
nsg-sgm3 mice
28
mice
16
humanized nog-exl
12
nog-exl
9
nsg-sgm3
9
hematopoietic stem
8
stem cells
8
long-term survival
8
myeloid cell
8

Similar Publications

Humanized mouse models in MDS.

Cell Death Dis

July 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem cell disorders defined by ineffective hematopoiesis, multilineage dysplasia, and risk of progression to acute myeloid leukemia. Improvements have been made to identify recurrent genetic mutations and their functional roles, but translating this into preclinical models is still difficult. Traditional murine systems lack the human-specific cytokine support and microenvironmental support that is necessary to reproduce MDS pathophysiology.

View Article and Find Full Text PDF

Humanized mice generated by hematopoietic stem cell (HSC) transplantation are limited by the immune system developed being allogeneic to the tumor. We have innovated a platform to reconstitute an autologous human immune system (HIS) in immunodeficient NOG-EXL mice from mobilized peripheral blood (MPB)-CD34 cells, along with PDX generated from the same patient's tumor tissue. Patients consented under an IRB-approved protocol for tumor biopsy and HSC apheresis at Emory University.

View Article and Find Full Text PDF

Background & Aims: Response to immunotherapy in hepatocellular carcinoma (HCC) is suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts.

View Article and Find Full Text PDF

Background & Aims: Responses to immunotherapies in hepatocellular carcinoma (HCC) are suboptimal with no biomarkers to guide patient selection. "Humanized" mice represent promising models to address this deficiency but are limited by variable chimerism and underdeveloped myeloid compartments. We hypothesized that expression of human GM-CSF and IL-3 increases tumor immune cell infiltration, especially myeloid-derived cells, in humanized HCC patient-derived xenografts (PDXs).

View Article and Find Full Text PDF

TNFSF11/TNFRSF11A Axis Amplifies HDM-Induced Airway Remodeling by Strengthening TGFβ1/STAT3 Action.

Allergy Asthma Immunol Res

July 2024

Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.

Purpose: Asthma, an airway inflammatory disease, involves multiple tumor necrosis factors (TNF). TNF ligand superfamily member 11 (TNFSF11) and its known receptor, TNF receptor superfamily 11A (TNFRSF11A), has been implicated in asthma; however, the related mechanisms remain unknown.

Methods: The serum and bronchial airway of patients with asthma and healthy subjects were examined.

View Article and Find Full Text PDF