Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The nature of glassy states in realistic finite dimensions is still under fierce debate. Lattice models can offer valuable insights and facilitate deeper theoretical understanding. Recently, a disordered-interacting lattice model with distinguishable particles in two dimensions (2D) has been shown to produce a wide range of dynamical properties of structural glasses, including the slow and heterogeneous characteristics of the glassy dynamics, various fragility behaviors of glasses, and so on. These findings support the usefulness of this model for modeling structural glasses. An important question is whether such properties still hold in the more realistic three dimensions. In this study, we aim to extend the distinguishable-particle lattice model (DPLM) to three dimensions (3D) and explore the corresponding glassy dynamics. Through extensive kinetic Monte Carlo simulations, we found that the 3D DPLM exhibits many typical glassy behaviors, such as plateaus in the mean square displacement of particles and the self-intermediate scattering function, dynamic heterogeneity, variability of glass fragilities, and so on, validating the effectiveness of the DPLM in a broader realistic setting. The observed glassy behaviors of the 3D DPLM appear similar to those of its 2D counterpart, in accordance with recent findings in molecular models of glasses. We further investigate the role of void-induced motions in dynamical relaxations and discuss their relation to dynamic facilitation. As lattice models tend to keep the minimal but important modeling elements, they are typically much more amenable to analysis. Therefore, we envisage that the DPLM will benefit future theoretical developments, such as the configuration tree theory, towards a more comprehensive understanding of structural glasses.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3sm01343jDOI Listing

Publication Analysis

Top Keywords

lattice model
12
three dimensions
12
structural glasses
12
distinguishable-particle lattice
8
lattice models
8
glassy dynamics
8
glassy behaviors
8
glasses
6
dimensions
5
glassy
5

Similar Publications

Among the different types of HIV-1 maturation inhibitors, those that stabilize the junction between the capsid protein C-terminal domain (CA) and the spacer peptide 1 (SP1) within the immature Gag lattice are promising candidates for antiretroviral therapies. Here, we report the atomic-resolution structure of CA-SP1 assemblies with the small-molecule maturation inhibitor PF-46396 and the assembly cofactor inositol hexakisphosphate (IP6), determined by magic angle spinning (MAS) NMR spectroscopy. Our results reveal that although the two PF-46396 enantiomers exhibit distinct binding modes, they both possess similar anti-HIV potency.

View Article and Find Full Text PDF

B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.

View Article and Find Full Text PDF

In this study, we seek to deepen the understanding of the Fe effect in Ni-oxyhydroxide-mediated oxygen evolution reaction (OER) electrocatalysis in alkaline conditions, where extremely small amounts of Fe can have a dramatic impact on catalytic performance. For this purpose, Density Functional Theory (DFT) electronic structure calculations with implicit solvation description is employed in a constant pH/potential simulation framework. Nanoparticle models are considered for the nickel-based oxyhydroxide material with different degrees of Fe incorporation, and the pH/U-dependent interface structure is studied.

View Article and Find Full Text PDF

Magnetic Excitations of a Nodally-Hybridized Heavy-Fermion SemiMetal: Application to CeNiSn.

J Phys Condens Matter

September 2025

Department of Physics, Temple University, Barton Hall, Philadelphia, PA 19122-6082, USA, Philadelphiaa, Pennsylvania, 19122, UNITED STATES.

We examine the magnetic excitations of an Anderson lattice model with a Vshaped pseudogap arising from nodal hybridization. The model produces a V-shaped pseudogap in the electronic density of states near the Fermi energy. It lies close to an antiferromagnetic quantum critical point and features lowdimensional Fermi surfaces, aligning with experimental observations of CeNiSn.

View Article and Find Full Text PDF

Carboxy-terminal tails (CTTs) of tubulin proteins are sites of regulating microtubule function. We previously conducted a genetic interaction screen and identified Kip3, a kinesin-8 motor, as potentially requiring the β-tubulin CTT (β-CTT) for function. Here we use budding yeast to define how β-CTT promotes Kip3 function and the features of β-CTT that are important for this mechanism.

View Article and Find Full Text PDF