98%
921
2 minutes
20
The determination of accumulated mass on filter-based aerosol samples is the basis for many forms of scientific research and regulatory monitoring of air quality. However, gravimetric analysis of air sampling filters is tedious, time-intensive, and prone to human error. This work describes the development of an utomated A Anayss aciliy (AIRLIFT) for high-throughput gravimetric mass and optical black carbon measurements of filter-based aerosol samples. The AIRLIFT consists of a sealed environmental enclosure, a 6-axis articulating robotic arm, a programmable control system, a filter weighing apparatus, and an optical system for the determination of aerosol black carbon via light attenuation. The system actively monitors microbalance stability and chamber relative humidity. Digital imaging and QR code scanning support sample tracking and data logging. Performance metrics for temperature and humidity control and weight stability were found to meet or exceed minimum requirements set forth by the US Environmental Protection Agency. The AIRLIFT is capable of analyzing approximately 260 filters per day while reducing the required personnel time by a factor of ~4.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10772922 | PMC |
http://dx.doi.org/10.4209/aaqr.210037 | DOI Listing |
Anal Methods
September 2025
Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Qc, Canada.
Toluene diisocyanate (TDI) is an irritant (skin, eye and respiratory) and a sensitizer. This compound is used to manufacture polyurethane materials such as flexible foams. The use of isocyanates may lead to exposure by inhalation and/or skin contact and isocyanates are recognized as a cause of occupational asthma.
View Article and Find Full Text PDFJ Fluoresc
September 2025
School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, P.R. China.
The antibiotic contamination in aquatic environments, particularly in aquaculture systems, poses substantial risks to ecological balance and human health. To address this issue, we engineered a novel ratiometric fluorescent probe utilizing dual-emission carbon dots (D-CDs) synthesized from sustainable biomass carrot and nitrogen-rich precursors (melamine and o-phenylenediamine) through an efficient one-pot hydrothermal approach. The D-CDs exhibited dual emission peaks at 425nm and 540 nm under 370nm excitation.
View Article and Find Full Text PDFACS Sens
September 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
Alpha-2-macroglobulin (A2M) is a critical biomarker implicated in inflammation, immune regulation, coagulation, and various pathological conditions such as liver fibrosis, neurodegenerative diseases, and cancers. However, its precise quantification remains challenging due to complex conformational dynamics, subtle abundance fluctuations, and interference from plasma proteins. Here, we present a label-free dynamic single-molecule sensing (LFDSMS) strategy for the sensitive and specific detection of A2M.
View Article and Find Full Text PDFBioimpacts
August 2025
Electrical Department, Shahrood University of Technology, Shahrood, Iran.
Introduction: Accurate and non-invasive blood glucose estimation is essential for effective health monitoring. Traditional methods are invasive and inconvenient, often leading to poor patient compliance. This study introduces a novel approach that leverages systolic-diastolic framing Mel-frequency cepstral coefficients (SDFMFCC) to enhance the accuracy and reliability of blood glucose estimation using photoplethysmography (PPG) signals.
View Article and Find Full Text PDFFood Res Int
November 2025
Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
Accurately assessing saltiness perception in solid foods is essential for the development of low-sodium foods that maintain saltiness despite possessing a lower sodium content. This study aimed to develop a practical system for evaluating human-perceived saltiness during oral processing, particularly when food was initially placed on the tongue. As a basis for system design, sensory evaluations demonstrated that higher local salt concentrations (inhomogeneous distribution) on the tongue significantly enhanced perceived saltiness intensity compared to a homogeneous distribution, despite equal total salt content.
View Article and Find Full Text PDF