98%
921
2 minutes
20
Background: In addition to excessive inflammation, immunosuppression has been recognized as a contributing factor to poor prognosis of sepsis. Although it has been reported that T cells can become functionally impaired during sepsis, the underlying mechanisms responsible for this phenomenon remain unclear. This study aims to elucidate the mechanisms by which macrophages induce immunosuppression in T cells.
Methods: In an in vivo setting, C57BL-6J mice were subjected to cecal ligation and puncture (CLP) with or without depletion of macrophages, and the functions of T cells were assessed. In vitro experiments involved direct co-culture or separate culture of T cells and septic macrophages using a transwell system, followed by analysis of T cell immunity. Additionally, a siRNA targeting CD18 on macrophages was utilized to investigate the role of complement receptor 3 (CR3).
Results: Both macrophages and T cells exhibited immunosuppression during sepsis. In the in vivo experiments, the absence of macrophages partially alleviated T cell immunosuppression, as evidenced by restored vitality, increased production of TNF-α and IFN-γ, elevated CD8 T cell levels, and decreased CD25 T cell levels. In the in vitro experiments, direct co-culture of T cells with septic macrophages resulted in diminished T cell immunity, which was improved when T cells and macrophages were separated by a chamber wall. The expression of CR3 (CD11b/CD18) was upregulated on septic macrophages, and silencing of CD18 led to decreased TNF-α production by T cells, reduced CD4 T cell numbers, and increased CD25 T cell numbers.
Conclusion: In sepsis, macrophages induce immunosuppression in T cells through direct cell-cell contact, with the involvement of CR3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770445 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e23266 | DOI Listing |
Medicine (Baltimore)
September 2025
Department of Trauma Intensive Care Unit, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
Sepsis often leads to unpredictable consequences. The prognosis of sepsis has not been largely improved. We tried to construct a prognostic gene model related to the 28-day mortality of sepsis to identify the risk of mortality and improve the outcome early.
View Article and Find Full Text PDFMedComm (2020)
September 2025
The activation of nucleotide oligomerization domain-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is implicated in the pathogenesis of various inflammatory diseases. The natural product oridonin possesses a novel mechanism for NLRP3 inhibition and a unique binding mode with NLRP3, but its poor anti-inflammatory activity limits further application. After virtual screening of diverse natural product libraries, dehydrocostus lactone (DCL) was considered as a potential NLRP3 inhibitor.
View Article and Find Full Text PDFOpen Med (Wars)
September 2025
Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
Objective: Endotoxin tolerance (ET) has been demonstrated to attenuate the inflammatory response in murine models of sepsis. This study seeks to elucidate the underlying mechanisms by which ET modulates inflammation in sepsis, with a particular focus on macrophage autophagy.
Methods: An sepsis model was generated using cecal ligation and perforation, while an model of inflammatory injury was induced via lipopolysaccharide (LPS) administration.
Nan Fang Yi Ke Da Xue Xue Bao
August 2025
Anhui Provincial Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu 233030, China.
Objectives: To investigate the effect of avitinib for suppressing NLRP3 inflammasome activation and alleviating septic shock and explore the underlying mechanism.
Methods: Mouse bone marrow-derived macrophages (BMDM), human monocytic leukemia cell line THP-1, and peripheral blood mononuclear cells (PBMC) isolated from healthy volunteers were pre-treated with avitinib, followed by activation of the canonical NLRP3 inflammasome using agonists including nigericin, monosodium urate (MSU) crystals, or adenosine triphosphate (ATP). Non-canonical NLRP3 inflammasome activation was induced intracellular transfection of lipopolysaccharide (LPS).
Sci Immunol
September 2025
Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
RNA modifications regulate phenotype and function of macrophages by regulating RNA translation, splicing, and stability. However, the role of -methylguanosine (mG) modification in macrophages and inflammation remains unexplored. In this study, we observed elevated levels of the methyltransferase METTL1 and mG modifications in macrophages from mouse and human tissues during acute kidney injury (AKI).
View Article and Find Full Text PDF