98%
921
2 minutes
20
Methyl ketone (MK)-ascarosides represent essential components of several pheromones in Caenorhabditis elegans, including the dauer pheromone, which triggers the stress-resistant dauer larval stage, and the male-attracting sex pheromone. Here, we identify an acyl-CoA thioesterase, ACOT-15, that is required for the biosynthesis of MK-ascarosides. We propose a model in which ACOT-15 hydrolyzes the β-keto acyl-CoA side chain of an ascaroside intermediate during β-oxidation, leading to decarboxylation and formation of the MK. Using comparative metabolomics, we identify additional ACOT-15-dependent metabolites, including an unusual piperidyl-modified ascaroside, reminiscent of the alkaloid pelletierine. The β-keto acid generated by ACOT-15 likely couples to 1-piperideine to produce the piperidyl ascaroside, which is much less dauer-inducing than the dauer pheromone, asc-C6-MK (ascr#2, 1). The bacterial food provided influences production of the piperidyl ascaroside by the worm. Our work shows how the biosynthesis of MK- and piperidyl ascarosides intersect and how bacterial food may impact chemical signaling in the worm.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102344 | PMC |
http://dx.doi.org/10.1016/j.chembiol.2023.12.006 | DOI Listing |
mSystems
April 2025
Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Valparaíso Region, Chile.
The molecular and physical communication within the microscopic world underpins the entire web of life as we know it. However, how organisms, such as bacteria, amoebae, and nematodes-all ubiquitous-interact to sustain their ecological niches, particularly how their associations generate and influence behavior, remains largely unknown. In this study, we developed a framework to examine long-term interactions between microbes and animals.
View Article and Find Full Text PDFSci Rep
October 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Meloidogyne incognita is one of the globally serious plant parasitic nematodes. New control measure is urgently needed to replace the common chemical control method. Ascarosides are pheromones regulating the nematodes' aggregation, avoidance, mating, dispersal and dauer recovery and formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125.
Decisions made over long time scales, such as life cycle decisions, require coordinated interplay between sensory perception and sustained gene expression. The dauer (or diapause) exit developmental decision requires sensory integration of population density and food availability to induce an all-or-nothing organismal-wide response, but the mechanism by which this occurs remains unknown. Here, we demonstrate how the Amphid Single Cilium J (ASJ) chemosensory neurons, known to be critical for dauer exit, perform sensory integration at both the levels of gene expression and calcium activity.
View Article and Find Full Text PDFInsects
July 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China.
Insects protect themselves through their immune systems. Entomopathogenic nematodes and their bacterial symbionts are widely used for the biocontrol of economically important pests. Ascarosides are pheromones that regulate nematode behaviors, such as aggregation, avoidance, mating, dispersal, and dauer recovery and formation.
View Article and Find Full Text PDFFront Mol Biosci
July 2024
Biology Department, Syracuse University, Syracuse, NY, United States.
Environmental conditions experienced early in the life of an animal can result in gene expression changes later in its life history. We have previously shown that animals that experienced the developmentally arrested and stress resistant dauer stage (postdauers) retain a cellular memory of early-life stress that manifests during adulthood as genome-wide changes in gene expression, chromatin states, and altered life history traits. One consequence of developmental reprogramming in postdauer adults is the downregulation of TRPV channel gene expression in the ADL chemosensory neurons resulting in reduced avoidance to a pheromone component, ascr#3.
View Article and Find Full Text PDF