Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Liver disorders are important adverse effects associated with antifungal drug treatment. However, the accuracy of Clinical International Classification of Diseases (ICD)-10 codes in identifying liver disorders for register based research is not well-established. This study aimed to determine the positive predictive value (PPV) of the ICD-10 codes for identifying patients with toxic liver disease, hepatic failure, and jaundice among patients with systemic antifungal treatment.

Methods: Data from the Swedish Prescribed Drug Register and the National Patient Register were utilized to identify adult patients who received systemic azole antifungal drugs and had a recorded diagnosis of toxic liver disease (K71.0, K71.1, K71.2, K71.6, K71.8, K71.9), hepatic failure (K72.0, K72.9), or jaundice (R17) between 2005 and 2016. The medical records of all included patients were reviewed. Prespecified criteria were used to re-evaluate and confirm each diagnosis, serving as the gold standard to calculate PPVs with 95% confidence intervals (95% CI) for each diagnostic group.

Results: Among the 115 included patients, 26 were diagnosed with toxic liver disease, 58 with hepatic failure, and 31 with jaundice. Toxic liver disease was confirmed in 14 out of 26 patients, yielding a PPV of 53.8% (95% CI 33.4-73.4%). Hepatic failure was confirmed in 26 out of 38 patients, resulting in a PPV of 62.1% (95% CI 48.4-74.5%). The highest PPV was found in jaundice, with 30 confirmed diagnoses out of 31, yielding a PPV of 96.8% (95% CI 83.3-99.9%).

Conclusion: Among patients who received azole antifungal treatment and were subsequently diagnosed with a liver disorder, the PPV for the diagnosis of jaundice was high, while the PPVs for toxic liver disease and hepatic failure were lower.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10770890PMC
http://dx.doi.org/10.1186/s12876-023-03110-wDOI Listing

Publication Analysis

Top Keywords

toxic liver
20
liver disease
20
hepatic failure
20
liver disorders
12
disease hepatic
12
liver
9
icd-10 codes
8
codes identifying
8
patients
8
failure jaundice
8

Similar Publications

Local anesthetics such as lidocaine have been used in humans and other animals to perform surgical procedures, therapeutics, and experiments. Lidocaine discarded into the environment through industrial waste, human and animal excretion, and household waste has been detected in the aquatic environment. For example, lidocaine in rivers, lakes, and influent and effluent water has been detected at wastewater treatment plants (7 ng/L-2.

View Article and Find Full Text PDF

Humans are exposed to mixtures of chemical pollutants from various environmental sources at all stages of life. Understanding how these compounds are causally linked to population health effects is challenging because of the ethical limitations on studying controlled human exposures and the complexity of the many potential molecular mechanisms involved. We hypothesized that studies using a combination of in vivo murine stress reporter models together with non-targeted global transcriptome analysis will define the toxic mechanisms of complex chemical mixtures in a physiological context.

View Article and Find Full Text PDF

PEGylated dendrimers for precision cancer therapy: Advances in tumor targeting, drug delivery, and clinical translation.

Biomater Adv

September 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

PEGylated dendrimers have emerged as highly adaptable nanocarriers for targeted cancer therapy, offering exceptional control over size, surface functionality, and drug loading. The covalent attachment of polyethylene glycol (PEG) chains to dendrimer surfaces improves biocompatibility, enhances circulation time, and minimizes immune clearance, facilitating passive tumor targeting through the enhanced permeability and retention (EPR) effect. These engineered nanosystems allow for precise encapsulation or conjugation of chemotherapeutic agents, nucleic acids, and imaging probes, with tunable release profiles.

View Article and Find Full Text PDF

Background: Fluconazole-tacrolimus interactions occur, but the additional effect of ritonavir is emphasized here, underscoring the need for careful prescription reconciliation in renal transplant recipients living with HIV-AIDS to prevent accidental ritonavir coadministration and inadvertent tacrolimus toxicity. The findings provide valuable insight for therapeutic drug monitoring (TDM) specialists. Patient informed consent was obtained for publication of the anonymized data.

View Article and Find Full Text PDF

Efficacious suppression of primary and metastasized liver tumors by polyIC-loaded lipid nanoparticles.

Hepatology

September 2025

Department of Pathology, Department of Molecular Biology, Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA.

Background And Aims: So far, there is no effective mechanism-based therapeutic agent tailored for liver tumors. Immune checkpoint inhibitors (ICIs) have demonstrated limited efficacy in liver cancer, often associated with severe adverse effects. Although poly-inosinic:cytidylic acid (polyIC) has shown an adjuvant effect when combined with anti-PD-L1 antibody (αPD-L1) in treating liver tumors in animal models, its systemic toxicity limits its clinical utility.

View Article and Find Full Text PDF