98%
921
2 minutes
20
Spinal myxopapillary ependymoma (MPE) and schwannoma represent clinically distinct intradural extramedullary tumors, albeit with shared and overlapping magnetic resonance imaging (MRI) characteristics. We aimed to identify significant MRI features that can differentiate between MPE and schwannoma and develop a novel prediction model using these features. In this study, 77 patients with MPE (n = 24) or schwannoma (n = 53) who underwent preoperative MRI and surgical removal between January 2012 and December 2022 were included. MRI features, including intratumoral T2 dark signals, subarachnoid hemorrhage (SAH), leptomeningeal seeding, and enhancement patterns, were analyzed. Logistic regression analysis was conducted to distinguish between MPE and schwannomas based on MRI parameters, and a prediction model was developed using significant MRI parameters. The model was validated internally using a stratified tenfold cross-validation. The area under the curve (AUC) was calculated based on the receiver operating characteristic curve analysis. MPEs had a significantly larger mean size (p = 0.0035), higher frequency of intratumoral T2 dark signals (p = 0.0021), associated SAH (p = 0.0377), and leptomeningeal seeding (p = 0.0377). Focal and diffuse heterogeneous enhancement patterns were significantly more common in MPEs (p = 0.0049 and 0.0038, respectively). Multivariable analyses showed that intratumoral T2 dark signal (p = 0.0439) and focal (p = 0.0029) and diffuse enhancement patterns (p = 0.0398) were independent factors. The prediction model showed an AUC of 0.9204 (95% CI 0.8532-0.9876) and the average AUC for internal validation was 0.9210 (95% CI 0.9160-0.9270). MRI provides useful data for differentiating spinal MPEs from schwannomas. The prediction model developed based on the MRI features demonstrated excellent discriminatory performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10762031 | PMC |
http://dx.doi.org/10.1038/s41598-023-50806-w | DOI Listing |
Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.
View Article and Find Full Text PDFWater Res
September 2025
College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China. Electronic address:
Groundwater overextraction presents persistent challenges due to strategic interdependence among decentralized users. While game-theoretic models have advanced the analysis of individual incentives and collective outcomes, most frameworks assume fully rational agents and neglect the role of cognitive and social factors. This study proposes a coupled model that integrates opinion dynamics with a differential game of groundwater extraction, capturing the interaction between institutional authority and evolving stakeholder preferences.
View Article and Find Full Text PDFAm J Emerg Med
September 2025
University of Toronto, Rotman School of Management, Canada.
Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.
Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.
JMIR Res Protoc
September 2025
University of Nevada, Las Vegas, Las Vegas, NV, United States.
Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.
View Article and Find Full Text PDFPurpose: In Armenia, a lower-middle-income country, cancer causes 21% of all deaths, with over half of cases diagnosed at advanced stages. Without universal health insurance, patients rely on out-of-pocket payments or black-market channels for costly immunotherapies, underscoring the need for real-world data to inform equitable policy reforms.
Methods: We conducted a multicenter, retrospective cohort study of patients who received at least one dose of an immune checkpoint inhibitor (ICI) between January 2017 and December 2023 across six Armenian oncology centers.