Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: Lasiodiplodia pseudotheobromae is an important fungal pathogen associated with die-back, canker and shoot blight in many plant hosts with a wide geographic distribution. The aim of our study was to provide high-quality genome assemblies and sequence annotation resources of L. pseudotheobromae, to facilitate future studies on the systematics, population genetics and genomics of the fungal pathogen L. pseudotheobromae.

Data Description: High-quality genomes of five L. pseudotheobromae isolates were sequenced based on Oxford Nanopore technology (ONT) and Illumina HiSeq sequencing platform. The total size of each assembly ranged from 43 Mb to 43.86 Mb and over 11,000 protein-coding genes were predicted from each genome. The proteins of predicted genes were annotated using multiple public databases, among the annotated protein-coding genes, more than 4,300 genes were predicted as potential virulence genes by the Pathogen Host Interactions (PHI) database. Moreover, the genome comparative analysis among L. pseudotheobromae and other closely related species revealed that 7,408 gene clusters were shared among them and 152 gene clusters unique to L. pseudotheobromae. This genome and associated datasets provided here will serve as a useful resource for further analyses of this fungal pathogen species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759541PMC
http://dx.doi.org/10.1186/s12863-023-01187-6DOI Listing

Publication Analysis

Top Keywords

fungal pathogen
12
high-quality genome
8
lasiodiplodia pseudotheobromae
8
associated die-back
8
protein-coding genes
8
genes predicted
8
gene clusters
8
pseudotheobromae
6
genes
5
genome resource
4

Similar Publications

Endophytic Fusarium isolates from Ceratozamia mirandae enhance tomato growth, suppress pathogenic fungi, and induce protection against Botrytis cinerea.

Rev Argent Microbiol

September 2025

IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.

Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).

View Article and Find Full Text PDF

Sweet potato foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) severely affects the yield and quality of sweet potatoes. To gain basic knowledge on regulating the pathogen using indigenous soil bacteria, the following organic materials were applied to potted soils collected from a sweet potato field contaminated with D. destruens: Kuroihitomi (compost made from shochu waste and chicken manure), Soil-fine (material made by adsorbing shochu waste on rice bran), and rice bran.

View Article and Find Full Text PDF

Advances in Understanding the Pathogenesis of Clostridioides difficile Infection.

Infect Dis Clin North Am

September 2025

Department of Microbiology, Institute for Immunology and Immune Health, University of Pennsylvania Perelman School of Medicine, 303B Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.

Clostridioides difficile infection (CDI) remains a significant cause of infectious colitis in the United States. Susceptibility to CDI is associated with perturbation of the gut microbiota, the indigenous microbes in the gastrointestinal tract. Upon colonization, the production of toxins and the ability to produce spores for environmental dissemination contribute to C difficile pathogenicity.

View Article and Find Full Text PDF

Effects of microbial infection on key gene expression in the Toll signaling pathway and immune response in Myzus persicae.

Pestic Biochem Physiol

November 2025

Institute of Entomology, Guizhou University, Guizhou Key Laboratory of Agricultural Biosecurity, Guiyang 550025, China.

The Toll signaling pathway serves as a crucial regulatory mechanism in the insect innate immune system, playing a pivotal role in defending against pathogenic microorganisms. However, the specific functions of aphids' unique immune system and Toll signaling pathway remain poorly understood. In this study, we systematically analyzed 12 key genes associated with the Toll signaling pathway in Myzus persicae.

View Article and Find Full Text PDF

Glycoside hydrolase Ma3360 mediates immune evasion by Metarhizium anisopliae in insects.

Pestic Biochem Physiol

November 2025

National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.

View Article and Find Full Text PDF