Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation.

Heliyon

Politecnico di Milano, DICA - Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The integration of microalgae cultivation in anaerobic digestion (AD) plants can take advantage of relevant nutrients (ammonium and ortho-phosphate) and CO loads. The proposed scheme of microalgae integration in existing biogas plants aims at producing approximately 250 t·y of microalgal biomass, targeting the biostimulants market that is currently under rapid expansion. A full-scale biorefinery was designed to treat 50 kt·y of raw liquid digestate from AD and 0.45 kt·y of CO from biogas upgrading, and 0.40 kt·y of sugar-rich solid by-products from a local confectionery industry. An innovative three-stage cultivation process was designed, modelled, and verified, including: i) microalgae inoculation in tubular PBRs to select the desired algal strains, ii) microalgae cultivation in raceway ponds under greenhouses, and iii) heterotrophic microalgae cultivation in fermenters. A detailed economic assessment of the proposed biorefinery allowed to compute a biomass production cost of 2.8 ± 0.3 €·kg DW, that is compatible with current downstream process costs to produce biostimulants, suggesting that the proposed nutrient recovery route is feasible from the technical and economic perspective. Based on the case study analysis, a discussion of process, bioproducts and policy barriers that currently hinder the development of microalgae-based biorefineries is presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10755323PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e23240DOI Listing

Publication Analysis

Top Keywords

microalgae cultivation
12
microalgae
5
integrating microalgae
4
microalgae growth
4
growth biomethane
4
biomethane plants
4
process
4
plants process
4
process design
4
design modelling
4

Similar Publications

High-ammonium wastewater can be simultaneously remediated and valorized through phototrophic cultivation of stress-resilient microalgae. This study evaluated the growth performance of 16 microalgae strains (specific growth rate μ = 0.108-0.

View Article and Find Full Text PDF

Chlorella vulgaris heterotrophy-to-phototrophy conversion dynamics are mostly independent of light intensity.

Bioresour Technol

September 2025

Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres, 51110 Pomacle, France. Electronic address:

Trophic conversion - a sequential cultivation strategy combining heterotrophic and phototrophic growth - offers a promising route for large-scale microalgae production by coupling the high biomass yields of heterotrophy with the biochemical advantages of phototrophy. Despite its potential, the cellular mechanisms governing this transition remain poorly understood. Here is presented the first mechanistic dissection of trophic conversion in Chlorella vulgaris, using isoactinic light conditions (30-600 µmol photons/m/s) and inocula with varied physiological states.

View Article and Find Full Text PDF

Electro-assisted microalgae cultivation, harvesting, and recovery of high-value products: A review.

Bioresour Technol

September 2025

Department of Chemical and Petroleum Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates; Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates. Ele

Electrotechnology has recently emerged as an eco-friendly method for enhancing microalgal processes. Electric fields can be applied to microalgae at different stages to improve their biomass productivity, high-value products (HVPs) content, harvesting efficiency, and cell disruption for biomolecule recovery. Incorporating them into microalgal processes can significantly contribute to achieving a circular bioeconomy.

View Article and Find Full Text PDF

This study investigated the valorisation of seawater desalination brine (61 g L1) by cultivating the halotolerant microalga Prymnesium parvum in 10-L bubble column photobioreactors, previously acclimated to a broad salinity range (5-61 g L1). Under optimized nutrients and irradiance, brine-based cultures achieved biomass yields (1.9 gL1) comparable to seawater controls.

View Article and Find Full Text PDF

Synechococcus HS-9 is being recognized as one of the potential strains for biodiesel production due to its high levels of fatty acid methyl ester (FAME), which are around 70-78%. The first stage in producing microalgae biodiesel involves the biomass production process through a photobioreactor cultivation process. In addition to microalgae strains, the optimization of the photobioreactor's performance is essential for producing high biomass.

View Article and Find Full Text PDF