98%
921
2 minutes
20
Purpose: Cytokeratin 19-positive cancer stem cells (CK19 + CSCs) and their tumor-associated macrophages (TAMs) have not been fully explored yet in the hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC).
Experimental Design: Single-cell RNA sequencing was performed on the viable cells obtained from 11 treatment-naïve HBV-associated HCC patients, including 8 CK19 + patients, to elucidate their transcriptomic landscape, CK19 + CSC heterogeneity, and immune microenvironment. Two in-house primary HCC cohorts (96 cases-related HBV and 89 cases with recurrence), TCGA external cohort, and in vitro and in vivo experiments were used to validate the results.
Results: A total of 64,581 single cells derived from the human HCC and adjacent normal tissues were sequenced, and 11 cell types were identified. The result showed that CK19 + CSCs were phenotypically and transcriptionally heterogeneous, co-expressed multiple hepatics CSC markers, and were positively correlated with worse prognosis. Moreover, the SPP1 + TAMs (TAM_SPP1) with strong M2-like features and worse prognosis were specifically enriched in the CK19 + HCC and promoted tumor invasion and metastasis by activating angiogenesis. Importantly, matrix metalloproteinase 9 (MMP9) derived from TAM_SPP1, as the hub gene of CK19 + HCC, was activated by the VEGFA signal.
Conclusions: This study revealed the heterogeneity and stemness characteristics of CK19 + CSCs and specific immunosuppressive TAM_SPP1 in CK19 + HCC. The VEGFA signal can activate TAM_SPP1-derived MMP9 to promote the invasion and metastasis of CK19 + HCC tumors. This might provide novel insights into the clinical treatment of HCC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12072-023-10615-9 | DOI Listing |
Genet Med
September 2025
Institute for Clinical and Translational Science, University of California, Irvine, CA, USA.
Purpose: Advancements in sequencing technologies have significantly improved clinical genetic testing, yet the diagnostic yield remains around 30-40%. Emerging technologies are now being deployed to address the remaining diagnostic gap.
Methods: We tested whether short-read genome sequencing could increase the diagnostic yield in individuals enrolled into the UCI-GREGoR research study, who had suspected Mendelian conditions and prior inconclusive testing.
Int J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
Research (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFFront Immunol
September 2025
Guangxi Key Laboratory of AIDS Prevention and Treatment & School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
Background: People living with HIV(PLWH) are a high-risk population for cancer. We conducted a pioneering study on the gut microbiota of PLWH with various types of cancer, revealing key microbiota.
Methods: We collected stool samples from 54 PLWH who have cancer (PLWH-C), including Kaposi's sarcoma (KS, n=7), lymphoma (L, n=22), lung cancer (LC, n=12), and colorectal cancer (CRC, n=13), 55 PLWH who do not have cancer (PLWH-NC), and 49 people living without HIV (Ctrl).
Front Immunol
September 2025
Department of Medicine, Division of Hematology, Bioclinicum and Center for Molecular Medicine, Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden.
Background: Metabolic reprogramming is an important hallmark of cervical cancer (CC), and extensive studies have provided important information for translational and clinical oncology. Here we sought to determine metabolic association with molecular aberrations, telomere maintenance and outcomes in CC.
Methods: RNA sequencing data from TCGA cohort of CC was analyzed for their metabolic gene expression profile and consensus clustering was then performed to classify tumors into different groups/subtypes.