98%
921
2 minutes
20
The gut microbiota plays a pivotal role in systemic metabolic processes and in particular functions, such as developing and preserving the skeletal muscle system. However, the interplay between gut microbiota/metabolites and the regulation of satellite cell (SC) homeostasis, particularly during aging, remains elusive. We propose that gut microbiota and its metabolites modulate SC physiology and homeostasis throughout skeletal muscle development, regeneration, and aging process. Our investigation reveals that microbial dysbiosis manipulated by either antibiotic treatment or fecal microbiota transplantation from aged to adult mice, leads to the activation of SCs or a significant reduction in the total number. Furthermore, employing multi-omics (e.g., RNA-seq, 16S rRNA gene sequencing, and metabolomics) and bioinformatic analysis, we demonstrate that the reduced butyrate levels, alongside the gut microbial dysbiosis, could be the primary factor contributing to the reduction in the number of SCs and subsequent impairments during skeletal muscle aging. Meanwhile, butyrate supplementation can mitigate the antibiotics-induced SC activation irrespective of gut microbiota, potentially by inhibiting the proliferation and differentiation of SCs/myoblasts. The butyrate effect is likely facilitated through the monocarboxylate transporter 1 (Mct1), a lactate transporter enriched on membranes of SCs and myoblasts. As a result, butyrate could serve as an alternative strategy to enhance SC homeostasis and function during skeletal muscle aging. Our findings shed light on the potential application of microbial metabolites in maintaining SC homeostasis and preventing skeletal muscle aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11427-023-2400-3 | DOI Listing |
Biol Cybern
September 2025
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 61801, IL, USA.
In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).
View Article and Find Full Text PDFAbdom Radiol (NY)
September 2025
Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, UK.
Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.
View Article and Find Full Text PDFKhirurgiia (Mosk)
September 2025
Pavlov Ryazan State Medical University, Ryazan, Russia.
Objective: To determine the distribution of patients with different anterior abdominal wall deformities.
Material And Methods: Physical data, CT and morphological findings were analyzed in 622 patients. The study was conducted in retro- and prospective nature.
JMIR Form Res
September 2025
Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.
Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.
View Article and Find Full Text PDFBackground: Diabetes mellitus is still a major health problem affecting individuals all over the world. Type 1 diabetes mellitus occurs due to insulin deficiency resulting from the destruction of pancreatic β-cells. This study aimed to investigate how vitamin D reduces blood glucose levels and HbA1c.
View Article and Find Full Text PDF