Dopamine D2 receptors in pyramidal neurons in the medial prefrontal cortex regulate social behavior.

Pharmacol Res

Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medica

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drugs acting on dopamine D2 receptors are widely used for the treatment of several neuropsychiatric disorders, including schizophrenia and depression. Social deficits are a core symptom of these disorders. Pharmacological manipulation of dopamine D2 receptors (Drd2), a Gi-coupled subtype of dopamine receptors, in the medial prefrontal cortex (mPFC) has shown that Drd2 is implicated in social behaviors. However, the type of neurons expressing Drd2 in the mPFC and the underlying circuit mechanism regulating social behaviors remain largely unknown. Here, we show that Drd2 were mainly expressed in pyramidal neurons in the mPFC and that the activation of the Gi-pathway in Drd2 pyramidal neurons impaired social behavior in male mice. In contrast, the knockdown of D2R in pyramidal neurons in the mPFC enhanced social approach behaviors in male mice and selectively facilitated the activation of mPFC neurons projecting to the nucleus accumbens (NAc) during social interaction. Remarkably, optogenetic activation of mPFC-to-NAc-projecting neurons mimicked the effects of conditional D2R knockdown on social behaviors. Altogether, these results demonstrate a cell type-specific role for Drd2 in the mPFC in regulating social behavior, which may be mediated by the mPFC-to-NAc pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2023.107042DOI Listing

Publication Analysis

Top Keywords

dopamine receptors
16
pyramidal neurons
16
social behavior
12
social behaviors
12
social
9
medial prefrontal
8
prefrontal cortex
8
drd2 mpfc
8
regulating social
8
neurons mpfc
8

Similar Publications

The dopaminergic system may be at the base of some neurobehavioral symptoms, as apathy and depression, and extrapyramidal symptoms, often seen in Alzheimer's disease patients. It can also have an impact on cognitive decline, as extrapyramidal symptoms, classically linked with dopamine dysfunction, are associated with increased risk of cognitive impairment and Alzheimer's disease progression. We review the knowledge of the dopaminergic system, emphasizing changes in Alzheimer's disease.

View Article and Find Full Text PDF

Brexpiprazole is a second-generation antipsychotic with multiple indications, including the treatment of schizophrenia. As a partial dopamine agonist, brexpiprazole differs from most other antipsychotics, yet uncertainties about its full mechanism of action have led to some ambiguity among prescribers. To address this gap, an international panel of psychiatric experts was organized and convened with funding from Otsuka Pharmaceutical Europe Ltd and H.

View Article and Find Full Text PDF

mGlu2 Receptors in the Basal Ganglia: A New Frontier in Addiction Therapy.

Front Biosci (Landmark Ed)

August 2025

Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.

Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.

View Article and Find Full Text PDF

PET/CT imaging of the late-gestation fetal brain in pregnant rats: A proof-of-concept study.

J Cereb Blood Flow Metab

September 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.

Preclinical PET studies offer the opportunity to elucidate molecular mechanisms underlying early neurodevelopment with minimal invasiveness. We demonstrated the feasibility of fetal brain PET in four pregnant rats ( = 42 fetuses). [F]FDG uptake in rat fetuses was readily visualized by PET imaging.

View Article and Find Full Text PDF

Background: After remission of a first-episode psychosis (FEP), antipsychotic discontinuation is associated with an increased risk of relapse compared to maintenance treatment. We studied short and longer-term effects of discontinuation of D receptor (DR) antagonist and partial agonist antipsychotics on striatal dopamine DR availability in FEP patients.

Methods: Remitted FEP patients underwent two [C]raclopride PET scans to measure striatal DR availability: 1 week after antipsychotic discontinuation (n = 16 antagonist users, n = 6 partial agonist users) and after being medication free for 6-8 weeks (n = 8 antagonist users, n = 5 partial agonist users).

View Article and Find Full Text PDF