Study on Cavitation, Warpage Deformation, and Moisture Diffusion of Sop-8 Devices during Molding Process.

Micromachines (Basel)

Key Laboratory of Electronic Equipment Structure Design (MOE), School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China.

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastic packaging has shown its advantages over ceramic packaging and metal packaging in lightweight, thin, and high-density electronic devices. In this paper, the reliability and moisture diffusion of Sop-8 (Small Out-Line Package-8) plastic packaging devices are studied, and we put forward a set of complete optimization methods. Firstly, we propose to improve the reliability of plastic packaging devices by reducing the amount of cavitation and warpage deformation. Structural and process factors were investigated in the injection molding process. An orthogonal experiment design was used to create 25 groups of simulation experiments, and Moldflow software was used to simulate the flow mode analysis. Then, the simulation results are subjected to range analysis and comprehensive weighted score analysis. Finally, different optimization methods are proposed according to different production conditions, and each optimization method can reduce cavitation or warpage by more than 9%. The moisture diffusion of the Sop-8 plastic packing devices was also investigated at the same time. It was determined that the contact surface between the lead frame and the plastic packaging material was more likely to exhibit delamination under the condition of MSL2 moisture diffusion because the humidity gradient was easily produced at the crucial points of different materials. The diffusion of moisture is related to the type of plastic packaging material and the diffusion path.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745373PMC
http://dx.doi.org/10.3390/mi14122175DOI Listing

Publication Analysis

Top Keywords

plastic packaging
20
moisture diffusion
16
cavitation warpage
12
diffusion sop-8
12
warpage deformation
8
molding process
8
packaging devices
8
optimization methods
8
packaging material
8
packaging
7

Similar Publications

This study investigated the presence of Pseudomonas aeruginosa and heterotrophic bacteria in 1150 samples of bottled mineral water. P. aeruginosa was initially isolated using membrane filtration on selective agar and subsequently confirmed by PCR.

View Article and Find Full Text PDF

This study investigates plastic food packaging (PFP) recycling symbols in Vietnam through field surveys, questionnaires and statistical and machine-learning models. Results show that 68.2% of shoppers correctly identified the recycling symbol, whereas 87.

View Article and Find Full Text PDF

Development of effective, safe, and degradable food packaging is essential to meet the demands of consumers and to ensure the continued growth of the food industry. In this study, superabsorbent bioactive aerogels based on cellulose and polyvinyl alcohol combined with the antibacterial bioactive extracts extracted from Portulaca oleracea were fabricated for the preservation of chilled meats. The main physicochemical and mechanical properties of the bioactive aerogels were characterized and evaluated.

View Article and Find Full Text PDF

Innovative packaging from vine shoots: a circular economy solution based on cellulosic aerogels for the wine industry using PLA as reinforcement.

Int J Biol Macromol

September 2025

Aerofybers Technologies SL. Parc Científic (UV), Carrer del Catedràtic Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain; Food Safety and Preservation Department, IATA-CSIC, Carrer del Catedràtic Agustín Escardino 7, 46980 Paterna, Valencia, Spain. Electronic address: isaacbg@aerofy

Highly porous, lightweight aerogels were developed based on cellulose extracted via industrial Kraft treatments from vine shoot (S) with the aim of valorising a currently generated waste and eucalyptus (EU) to reduce seasonality. In order to enhance their hydrophobicity and mechanical resistance, a poly-lactic acid (PLA) coating was applied through two different methodologies: spray- and pipette-coating. The resulting materials presented low densities (23-80 kg/m) with improved mechanical performance, revealing a notable augment in compressive strength after PLA coating (up to 20-fold increase, reaching 1.

View Article and Find Full Text PDF

Background: The healthcare sector is a significant producer of greenhouse gas emissions, with intensive care units (ICUs) being major contributors. The environmental impact of medical waste largely depends on disposal methods; proper segregation can enhance recycling potential.

Local Problem: High variability in waste segregation and excessive linen consumption in the burn and polytrauma ICU.

View Article and Find Full Text PDF