98%
921
2 minutes
20
Aroma is among of the most important criteria that indicate the quality of food and beverage products. Aroma compounds can be found as free molecules or glycosides. Notably, a significant portion of aroma precursors accumulates in numerous food products as nonvolatile and flavorless glycoconjugates, termed glycosidic aroma precursors. When subjected to enzymatic hydrolysis, these seemingly inert, nonvolatile glycosides undergo transformation into fragrant volatiles or volatiles that can generate odor-active compounds during food processing. In this context, microbial β-glucosidases play a pivotal role in enhancing or compromising the development of flavors during food and beverage processing. β-glucosidases derived from bacteria and yeast can be utilized to modulate the concentration of particular aroma and taste compounds, such as bitterness, which can be decreased through hydrolysis by glycosidases. Furthermore, oral microbiota can influence flavor perception by releasing volatile compounds that can enhance or alter the perception of food products. In this review, considering the glycosidic flavor precursors present in diverse food and beverage products, we underscore the significance of glycosidases with various origins. Subsequently, we delve into emerging insights regarding the release of aroma within the human oral cavity due to the activity of oral microbial glycosidases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742834 | PMC |
http://dx.doi.org/10.3390/foods12244484 | DOI Listing |
Food Chem
September 2025
School of Food Science and Technology, Jiangnan University, Wuxi 214122, China. Electronic address:
Dimethyl phthalate (DMP) is widely used as a plasticizer in the plastics industry, posing a serious threat to environmental pollution and public health. In this work, CuFeO@AC was used as a coating to prepare a novel solid-phase microextraction (SPME) fiber. CuFeO@AC fiber exhibits a larger specific surface area and more active sites, significantly enhancing DMP enrichment efficiency.
View Article and Find Full Text PDFJ Texture Stud
October 2025
College of Automation Engineering, Northeast Electric Power University, Jilin, China.
Astringency is a complex oral sensation characterized by dryness and constriction in the mouth. It is typically induced by polyphenol-rich foods and beverages such as wine and tea. The quantitative assessment of astringency intensity has become a prominent research focus in the food science field.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.
Epidemiological studies in humans have suggested that tomato consumption and the compositional ratios of Prevotella, Megamonas, and Streptococcus in the intestinal microbiota are related to intestinal permeability. In this study, we investigated the causal relationship using Caenorhabditis (C.) elegans.
View Article and Find Full Text PDFPlant Foods Hum Nutr
September 2025
REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
The growing interest in prebiotic ingredients has led to the valorization of agri-food by-products, such as coffee silverskin, known for its richness in dietary fiber and health-promoting compounds. This study evaluated the impact of in vitro simulation of gastrointestinal digestion on the chemical composition (carbohydrates, caffeine, and chlorogenic acids) and prebiotic potential (probiotic growth, organic acid production, pH, and antioxidant activity) of milled coffee silverskin. The results show stability of polysaccharides during digestion, while caffeine and 5-caffeoylquinic acid were partially released into the bioaccessible fraction.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei 230036, China.
Tea is one of the most widely consumed beverages globally, whereas tea polyphenols are always receiving the most attention in scientific research. In past decades, the polyphenols, their derivatives, and oligomers and polymers which possess potential antioxidant, anticancer, and hypolipidemic effects were separated and identified. However, after reviewing previous study in tea polyphenols, it was found that some thorny problems have been left unsolved although a series of conventional methods, such as chromatography, mass spectrometry, and nuclear magnetic resonance, have already been widely applied; meanwhile, a variety of novel analytical methods and theories are booming.
View Article and Find Full Text PDF