98%
921
2 minutes
20
Mycoplasma pneumoniae is a significant contributor to lower respiratory infections in children. However, the lipidomics and metabolics bases of childhood M. pneumoniae infections remain unclear. In this study, lipidomics and metabolomics analyses were conducted using UHPLC-LTQ-Orbitrap XL mass spectrometry and gas chromatography-triple quadrupole mass spectrometry on plasma (n = 65) and urine (n = 65) samples. MS-DIAL software, in combination with LipidBlast and Fiehn BinBase DB, identified 163 lipids and 104 metabolites in plasma samples, as well as 208 metabolites in urine samples. Perturbed lipid species (adjusted p < 0.05) were observed, including lysophosphatidylethanolamines, phosphatidylinositols, phosphatidylcholines, phosphatidylethanol amines, and triglycerides. Additionally, differential metabolites (adjusted p < 0.05) exhibited associations with amino acid metabolism, nucleotide metabolism, and energy metabolism. Thirteen plasma metabolites, namely l-hydroxyproline, 3-phosphoglycerate, citric acid, creatine, inosine, ribitol, α tocopherol, cholesterol, cystine, serine, uric acid, tagatose, and glycine, showed significant associations with disease severity (p < 0.05) and exhibited distinct separation patterns in M. pneumoniae-infected bronchitis and pneumonia, with an area under the curve of 0.927. Nine of them exhibited either positive or negative correlations with neutrophil or lymphocyte percentages. These findings indicated significant systemic metabolic shifts in childhood M. pneumoniae infections, offering valuable insights into the associated metabolic alterations and their relationship with disease severity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bmc.5817 | DOI Listing |
Biomed Environ Sci
August 2025
Department of Epidemiology, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China;Taixing Second People's Hospital, Suzhou Medical College of Soochow University, Taizhou 225400, Jiangsu, China.
Objective: Lipid oxidation is involved in the pathogenesis of atherosclerosis and may be contribute to the development of Ischemic stroke (IS). However, the lipid profiles associated with IS have been poorly studied. We conducted a pilot study to identify potential IS-related lipid molecules and pathways using lipidomic profiling.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.
Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.
Alzheimers Dement
September 2025
Cell Biology Program, Sloan Kettering Institute, New York, New York, USA.
Introduction: Biomarkers are essential for monitoring the progression of frontotemporal dementia (FTD). Although dysregulated brain lipid metabolism, particularly sphingolipids enriched in the nervous system, is a key feature of neurodegeneration, plasma lipids remain underexplored as biomarkers compared to imaging and serum proteins.
Methods: We examined plasma lipidomes using liquid chromatography-tandem mass spectrometry (LC-MS/MS) from individuals carrying pathogenic variants linked to autosomal dominant FTD (GRN, C9orf72, MAPT) and non-carriers.
Food Res Int
November 2025
School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China. Electronic address:
Goat milk is prized for its nutritional value, but the illegal addition of δ-decanolactone to enhance flavor poses risks to product integrity and safety. This study employed a tripartite multi-omics framework integrating metabolomics, lipidomics, and proteomics, combined with FTIR and CLSM to systematically elucidate the multifaceted effects of δ-decanolactone on goat milk. Chemometric and bioinformatic pipelines identified dysregulated molecules and pathways, while molecular docking validated interactions with key targets.
View Article and Find Full Text PDFCardiovasc Diabetol
September 2025
Computational Biomedicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
Background: Sodium-glucose cotransporter 2 (SGLT2) inhibitors, such as Empagliflozin, are antidiabetic drugs that reduce glucose levels and have emerged as a promising therapy for patients with heart failure (HF), although the exact molecular mechanisms underlying their cardioprotective effects remain to be fully elucidated. The EmDia study, a randomized, double-blind trial conducted at the University Medical Center of Mainz, has confirmed the beneficial effects of Empagliflozin in HF patients after both one and twelve weeks of treatment. In this work, we aimed to assess whether changes in lipid profiles driven by Empagliflozin use in HF patients in the EmDia trial could assist in gaining a better understanding of its cardioprotective mechanisms.
View Article and Find Full Text PDF