98%
921
2 minutes
20
Background & Aims: Liver homeostasis is ensured in part by time-of-day-dependent processes, many of them being paced by the molecular circadian clock. Liver functions are compromised in metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH), and clock disruption increases susceptibility to MASLD progression in rodent models. We therefore investigated whether the time-of-day-dependent transcriptome and metabolome are significantly altered in human steatotic and MASH livers.
Methods: Liver biopsies, collected within an 8 h-window from a carefully phenotyped cohort of 290 patients and histologically diagnosed to be either normal, steatotic or MASH hepatic tissues, were analyzed by RNA sequencing and unbiased metabolomic approaches. Time-of-day-dependent gene expression patterns and metabolomes were identified and compared between histologically normal, steatotic and MASH livers.
Results: Herein, we provide a first-of-its-kind report of a daytime-resolved human liver transcriptome-metabolome and associated alterations in MASLD. Transcriptomic analysis showed a robustness of core molecular clock components in steatotic and MASH livers. It also revealed stage-specific, time-of-day-dependent alterations of hundreds of transcripts involved in cell-to-cell communication, intracellular signaling and metabolism. Similarly, rhythmic amino acid and lipid metabolomes were affected in pathological livers. Both TNFα and PPARγ signaling were predicted as important contributors to altered rhythmicity.
Conclusion: MASLD progression to MASH perturbs time-of-day-dependent processes in human livers, while the differential expression of core molecular clock components is maintained.
Impact And Implications: This work characterizes the rhythmic patterns of the transcriptome and metabolome in the human liver. Using a cohort of well-phenotyped patients (n = 290) for whom the time-of-day at biopsy collection was known, we show that time-of-day variations observed in histologically normal livers are gradually perturbed in liver steatosis and metabolic dysfunction-associated steatohepatitis. Importantly, these observations, albeit obtained across a restricted time window, provide further support for preclinical studies demonstrating alterations of rhythmic patterns in diseased livers. On a practical note, this study indicates the importance of considering time-of-day as a critical biological variable which may significantly affect data interpretation in animal and human studies of liver diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10730870 | PMC |
http://dx.doi.org/10.1016/j.jhepr.2023.100948 | DOI Listing |
Clin Kidney J
September 2025
Department of Nephrology. University Clinical Hospital, INCLIVA, Valencia. RICORS Renal Instituto de salud Carlos III, Valencia. Spain.
Metabolic dysfunction-associated steatotic liver disease (MASLD) has emerged as a major contributor to systemic metabolic dysfunction and is increasingly recognized as a risk enhancer for both cardiovascular disease (CVD) and chronic kidney disease (CKD). This review explores the complex interconnections between MASLD, CVD, and CKD, with emphasis on shared pathophysiological mechanisms and the clinical implications for risk assessment and management. We describe the crosstalk among the liver, heart, and kidneys, focusing on insulin resistance, chronic inflammation, and progressive fibrosis as key mediators.
View Article and Find Full Text PDFKaohsiung J Med Sci
September 2025
Hepatitis Research Center, College of Medicine; Center for Metabolic Disorders and Obesity; Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an increasingly prevalent chronic liver condition that can progress to severe complications such as metabolic dysfunction-associated steatohepatitis (MASH). Despite its growing burden, there are no reliable non-invasive biomarkers for tracking disease progression. In this study, we established a murine MASLD/MASH model using a high-fat diet and chemical (CCl) induction.
View Article and Find Full Text PDFCell Mol Life Sci
September 2025
Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, China.
Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.
View Article and Find Full Text PDFLiver Int
October 2025
The Global NASH Council, Washington, DC, USA.
Background: The Middle East and North Africa (MENA) region is undergoing demographic shifts potentially increasing metabolic dysfunction-associated steatotic liver disease (MASLD) and its complications. We assessed MASLD prevalence and liver disease burden from 2010 to 2021.
Methods: Data from Global Burden of Disease (GBD), United Nations Population Division and NCD Risk Factor Collaboration covering 21 MENA countries were used for annual percent change (APC) trends per Joinpoint regression.
Front Immunol
September 2025
Medical Diagnostic and Microbiological Laboratory of Ludwik Rydygier Hospital in Suwalki, Suwalki, Poland.
Background: Dysregulation of immune responses may influence the progression of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH). Our recent data suggest the role of Th17-related cytokines in fibrosis advancement in MASLD. Herein, we aimed to analyze T-regulatory and Th17-producing T-lymphocytes by flow cytometry with respect to MASLD progression.
View Article and Find Full Text PDF