98%
921
2 minutes
20
Background: There are currently no effective clinical therapies to ameliorate the loss of function that occurs after spinal cord injury. Electrical stimulation of the rat spinal cord through the rat tail has previously been described by our laboratory. We propose combinatorial treatment with human induced pluripotent stem cell-derived spinal neural progenitor cells (sNPCs) along with tail nerve electrical stimulation (TANES). The purpose of this study was to examine the influence of TANES on the differentiation of sNPCs with the hypothesis that the addition of TANES would affect incorporation of sNPCs into the injured spinal cord, which is our ultimate goal.
Methods: Chronically injured athymic nude rats were allocated to one of three treatment groups: injury only, sNPC only, or sNPC + TANES. Rats were sacrificed at 16 weeks post-transplantation, and tissue was processed and analyzed utilizing standard histological and tissue clearing techniques. Functional testing was performed. All quantitative data were presented as mean ± standard error of the mean. Statistics were conducted using GraphPad Prism.
Results: We found that sNPCs were multi-potent and retained the ability to differentiate into mainly neurons or oligodendrocytes after this transplantation paradigm. The addition of TANES resulted in more transplanted cells differentiating into oligodendrocytes compared with no TANES treatment, and more myelin was found. TANES not only promoted significantly higher numbers of sNPCs migrating away from the site of injection but also influenced long-distance axonal/dendritic projections especially in the rostral direction. Further, we observed localization of synaptophysin on SC121-positive cells, suggesting integration with host or surrounding neurons, and this finding was enhanced when TANES was applied. Also, rats that were transplanted with sNPCs in combination with TANES resulted in an increase in serotonergic fibers in the lumbar region. This suggests that TANES contributes to integration of sNPCs, as well as activity-dependent oligodendrocyte and myelin remodeling of the chronically injured spinal cord.
Conclusions: Together, the data suggest that the added electrical stimulation promoted cellular integration and influenced the fate of human induced pluripotent stem cell-derived sNPCs transplanted into the injured spinal cord.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10734202 | PMC |
http://dx.doi.org/10.1186/s13287-023-03597-w | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
November 2025
Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
Background And Objectives: Myelitis is a relatively common clinical entity for neurologists, with diverse underlying causes. The aim of this study was to describe the incidence of myelitis, its causes, clinical presentation, and factors predicting functional outcomes and relapses.
Methods: Using the Swedish National Patient Registry, we identified all adult patients in Stockholm County between 2008 and 2018 using International Classification of Diseases, 10th Edition (ICD-10) codes likely to include myelitis.
J Spinal Cord Med
September 2025
Department of Surgery, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada.
Study Design: A retrospective study with a crossover design.
Objectives: Maintaining mean arterial pressure (MAP) is crucial in the early management of SCI, yet the role of oral midodrine in this setting remains unclear. This study evaluates whether midodrine facilitates IV vasopressor weaning within 24 hours of initiation.
Sci Prog
September 2025
Department of Neurology, University of Afyonkarahisar Health Sciences, Afyonkarahisar, Türkiye.
A considerable number of individuals are diagnosed with idiopathic trigeminal neuralgia. In order to achieve a more complete understanding of the pathophysiology, it is essential to adopt a range of novel approaches and utilize new animal models. This study investigated changes in the messenger RNA (mRNA) expression of ion-channels in a newly developed animal model of trigeminal neuropathic pain induced by cervical spinal dorsal horn compression.
View Article and Find Full Text PDFEur Spine J
September 2025
Consultant Neurosurgeon, Centre for Functional Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
Stem Cell Rev Rep
September 2025
Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, 00014, Finland.
Mutations in Delta Like Non-Canonical Notch Ligand 1 (DLK1), a paternally expressed imprinted gene, underlie central precocious puberty (CPP), yet the mechanism remains unclear. To test the hypothesis that DLK1 plays a role in gonadotropin releasing hormone (GnRH) neuron ontogeny, 75 base pairs were deleted in both alleles of DLK1 exon 3 with CRISPR-Cas9 in human pluripotent stem cells (hPSCs). This line, exhibiting More than 80% loss of DLK1 protein, was differentiated into GnRH neurons by dual SMAD inhibition (dSMADi), FGF8 treatment and Notch inhibition, as previously described, however, it did not exhibit accelerated GNRH1 expression.
View Article and Find Full Text PDF