A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Effect of different HA/β-TCP coated 3D printed bioceramic scaffolds on repairing large bone defects in rabbits. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Treatment of large segmental bone defects is still a major clinical challenge, and bone grafting is the main method. The development of novel bone graft substitutes will help solve this problem.

Methods: Porous bioceramics hydroxyapatite (HA) scaffolds coated with different ratios of HA/β-tricalcium phosphate (β-TCP) were prepared by 3D printing. The scaffolds were sampled and tested in large segmental bone defect rabbit models. X-ray, micro-computed tomography (CT), hematoxylin and eosin (HE) staining, Van-Gieson staining, and type I collagen staining were performed to find the best scaffolds for large segmental bone defect treatment.

Results: The average length, diameter, compressive strength, and porosity of the bioceramics scaffolds were 15.05 ± 0.10 mm, 4.98 ± 0.06 mm, 11.11 ± 0.77 MPa, and 54.26 ± 5.38%, respectively. Postoperative lateral radiographs suggested the scaffold group got better bone healing and stability than the blank group. Micro-CT showed new bones grew into the scaffold from the two ends of the fracture along the scaffold and finally achieved bony union. The new bone volume around the scaffolds suggested the 3:7 HA/β-TCP-coated bioceramic scaffolds were more favorable for the healing of large segmental bone defects. The results of HE, Van-Gieson, and type I collagen staining also suggested more new bone formation in 3:7 HA/β-TCP-coated bioceramic scaffolds.

Conclusion: 3:7 HA/β-TCP-coated porous bioceramics scaffolds are more conducive to the repair of large bone defects in rabbits. The results of this study can provide some reference and theoretical support in this area.

Download full-text PDF

Source
http://dx.doi.org/10.1177/10225536231222121DOI Listing

Publication Analysis

Top Keywords

bone defects
16
large segmental
16
segmental bone
16
bone
11
scaffolds
8
bioceramic scaffolds
8
large bone
8
defects rabbits
8
porous bioceramics
8
bone defect
8

Similar Publications