98%
921
2 minutes
20
Stringent regulation of protein homeostasis pathways, under both physiological and pathological conditions, is necessary for the maintenance of proteome fidelity and optimal cell functioning. However, when challenged by endogenous or exogenous stressors, these proteostasis pathways can become dysregulated with detrimental consequences for protein fate, cell survival, and overall organism health. Most notably, there are numerous somatic pathologies associated with a loss of proteostatic regulation, including neurodegenerative disorders, type 2 diabetes, and some cancers. Lipid oxidation-derived reactive carbonyl species (RCS), such as 4-hydroxynonenal (4HNE) and malondialdehyde, are relatively underappreciated purveyors of proteostatic dysregulation, which elicit their effects the nonenzymatic post-translational modification of proteins. Emerging evidence suggests that a subset of germline proteins can serve as substrates for 4HNE modification. Among these, prevalent targets include succinate dehydrogenase, heat shock protein A2 and A-kinase anchor protein 4, all of which are intrinsically associated with fertility. Despite growing knowledge in this field, the RCS adductomes of spermatozoa and oocytes are yet to be comprehensively investigated. Furthermore, the manner by which RCS-mediated adduction impacts protein fate and drives cellular responses, such as protein aggregation, requires further examination in the germline. Given that RCS-protein adduction has been attributed a role in infertility, there has been sparked research investment into strategies to prevent lipid peroxidation in germ cells. An increased depth of knowledge regarding the mechanisms and substrates of RCS-mediated protein modification in reproductive cells may reveal important targets for the development of novel therapies to improve fertility and pregnancy outcomes for future generations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ars.2023.0314 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).
View Article and Find Full Text PDFPhysiol Plant
September 2025
Plant BioSystems, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
Auxins are involved in the regulation of fruit set and development; however, the role of IAA is unclear in pea (Pisum sativum) since the endogenous auxin 4-Cl-IAA appears to be the auxin stimulating ovary (pericarp) growth. To further understand the role of auxins during fruit development, auxin localization, quantitation, transport, and gene expression activity were assessed in this model legume species. IAA levels and auxin activity (DR5::β-Glucuronidase [GUS] staining and enzyme activity) were substantially reduced in the pericarp vascular tissues, pedicels, and peduncles of fruit upon seed removal, reflecting auxin transport streams derived from the seeds through these tissues.
View Article and Find Full Text PDFBiochem J
September 2025
Cancer Research UK Scotland Institute, Glasgow, G61 1BD, U.K.
RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.
View Article and Find Full Text PDF