98%
921
2 minutes
20
Extensive efforts are underway to develop bacteriophages as therapies against antibiotic-resistant bacteria. However, these efforts are confounded by the instability of phage preparations and a lack of suitable tools to assess active phage concentrations over time. In this study, we use dynamic light scattering (DLS) to measure changes in phage physical state in response to environmental factors and time, finding that phages tend to decay and form aggregates and that the degree of aggregation can be used to predict phage bioactivity. We then use DLS to optimize phage storage conditions for phages from human clinical trials, predict bioactivity in 50-y-old archival stocks, and evaluate phage samples for use in a phage therapy/wound infection model. We also provide a web application (Phage-Estimator of Lytic Function) to facilitate DLS studies of phages. We conclude that DLS provides a rapid, convenient, and nondestructive tool for quality control of phage preparations in academic and commercial settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726995 | PMC |
http://dx.doi.org/10.1093/pnasnexus/pgad406 | DOI Listing |
PLoS Pathog
September 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Macrophages are professional phagocytes that play a major role in engulfing and eliminating invading pathogens. Some intracellular pathogens, such as Salmonella enterica serovar Typhimurium, exploit macrophages as niches for their replication, which requires precise and dynamic modulation of bacterial gene expression in order to resist the hostile intracellular environment. Here, we present a comprehensive analysis of the global transcriptome of S.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Microbiology, University College Cork, Cork, T12 Y337, Ireland.
The genomes of 43 distinct lactococcal strains were reconstructed by a combination of long- and short-read sequencing, resolving the plasmid complement and methylome of these strains. The genomes comprised 43 chromosomes of approximately 2.5 Mb each and 269 plasmids ranging from 2 to 211 kb (at an average occurrence of 6 per strain).
View Article and Find Full Text PDFFood Res Int
November 2025
Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China. Electronic address:
Inflammatory bowel disease (IBD) encompasses two main conditions: Crohn's disease and ulcerative colitis. The role of foodborne pathogens, often transmitted through contaminated food, is a subject of ongoing research regarding their potential involvement in IBD. The most common foodborne pathogens S.
View Article and Find Full Text PDFNat Microbiol
September 2025
Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
Viral infections are implicated in the pathogenesis of autoimmune diseases, including Sjögren's disease (SjD), but the mechanisms linking viral antigens to disease development remain poorly understood. To address this, we conducted shotgun metagenomic sequencing of saliva samples from 35 patients with SjD and 25 healthy controls. The salivary virome of the patients with SjD, particularly those with high disease activity, had an expansion of Siphoviridae bacteriophages and increased eukaryotic viral sequences, including Vientovirus.
View Article and Find Full Text PDFNat Microbiol
September 2025
The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.
Restriction-modification (R-M) systems protect against phage infection by detecting and degrading invading foreign DNA. However, like many prokaryotic anti-phage defences, R-M systems pose a major risk of autoimmunity, exacerbated by the presence of hundreds to thousands of potential cleavage sites in the bacterial genome. Pseudomonas aeruginosa strains experience the temporary inactivation of restriction endonucleases following growth at high temperatures, but the reason and mechanisms for this phenomenon are unknown.
View Article and Find Full Text PDF