Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Machine learning (ML) has increasingly been used to assist and expand current practices in neuropathology. However, generating large imaging datasets with quality labels is challenging in fields which demand high levels of expertise. Further complicating matters is the often seen disagreement between experts in neuropathology-related tasks, both at the case level and at a more granular level. Neurofibrillary tangles (NFTs) are a hallmark pathological feature of Alzheimer disease, and are associated with disease progression which warrants further investigation and granular quantification at a scale not currently accessible in routine human assessment. In this work, we first provide a baseline of annotator/rater agreement for the tasks of Braak NFT staging between experts and NFT detection using both experts and novices in neuropathology. We use a whole-slide-image (WSI) cohort of neuropathology cases from Emory University Hospital immunohistochemically stained for Tau. We develop a workflow for gathering annotations of the early stage formation of NFTs (Pre-NFTs) and mature intracellular (iNFTs) and show ML models can be trained to learn annotator nuances for the task of NFT detection in WSIs. We utilize a model-assisted-labeling approach and demonstrate ML models can be used to aid in labeling large datasets efficiently. We also show these models can be used to extract case-level features, which predict Braak NFT stages comparable to expert human raters, and do so at scale. This study provides a generalizable workflow for various pathology and related fields, and also provides a technique for accomplishing a high-level neuropathology task with limited human annotations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10726581PMC
http://dx.doi.org/10.1186/s40478-023-01691-xDOI Listing

Publication Analysis

Top Keywords

machine learning
8
neurofibrillary tangles
8
braak nft
8
nft detection
8
generalizable machine
4
learning workflow
4
workflow neurodegenerative disease
4
neurodegenerative disease staging
4
staging focus
4
focus neurofibrillary
4

Similar Publications

Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF

Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.

Setting: West China Hospital of Sichuan University, China.

Design: Deep-learning study.

View Article and Find Full Text PDF

Predicting Unplanned Readmission Risk in Patients With Cirrhosis: Complication-Aware Dynamic Classifier Selection Approach.

JMIR Med Inform

September 2025

College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.

Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.

View Article and Find Full Text PDF

Diagnostic and Screening AI Tools in Brazil's Resource-Limited Settings: Systematic Review.

JMIR AI

September 2025

Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.

Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.

Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.

Methods: A systematic review was performed.

View Article and Find Full Text PDF