C9orf72-associated amyotrophic lateral sclerosis (c9ALS) is caused by an intronic GC repeat expansion that leads to toxic RNA transcripts and dipeptide repeat proteins (DPRs). A clinical trial using the antisense oligonucleotide (ASO) BIIB078 to target these transcripts was discontinued after failing to provide clinical benefit. Here, we determine the extent of target engagement in the central nervous system (CNS) and elucidate pharmacodynamic cerebrospinal fluid (CSF) biomarkers following treatment.
View Article and Find Full Text PDFNuclear loss and cytoplasmic buildup of the RNA-binding protein TDP-43 is a hallmark of ALS and related disorders. While studies using artificial TDP-43 depletion in neurons have revealed changes in gene expression and splicing, their relevance to actual patients remained unclear. Induced pluripotent stem cell (iPSC)-derived neurons (iPSNs) from 180 individuals, including controls, C9orf72 ALS/FTD, and sporadic ALS (sALS) patients were used to generate and analyze ~32,500 qRT-PCR data points across 20 genes which identified variable, time-dependent signatures of TDP-43 loss of function in individual lines.
View Article and Find Full Text PDFLoss of nuclear TDP-43 splicing activity is a common feature across neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but its relevance to Alzheimer's disease (AD) remains unclear. Here, we show that TDP-43 pathology in AD is broadly associated with splicing abnormalities, including aberrant splicing of amyloid precursor protein (APP). TDP-43 drives the formation of elongated APP isoforms, disrupting alternative splicing across ALS, FTLD-TDP and AD, providing a compelling mechanism for a long-standing observation of APP isoform dysregulation.
View Article and Find Full Text PDFbioRxiv
July 2025
TDP-43 pathology is a defining feature of Limbic-Predominant Age-Related TDP-43 Encephalopathy neuropathologic change (LATE-NC) and is frequently comorbid with Alzheimer's disease neuropathologic change (ADNC). However, the molecular consequences of co-occurring LATE-NC and ADNC pathology (TDP-43, β-amyloid, and tau protein pathologies) remain unclear. Here, we conducted a comparative biochemical, molecular, and proteomic analysis of hippocampal tissue from 90 individuals spanning control, LATE-NC, ADNC, and ADNC+LATE-NC groups to assess the impact of cryptic exon (CE) inclusion, phosphorylated TDP-43 pathology (pTDP-43), and AD-related pathologies (β-amyloid, and tau) on the proteome.
View Article and Find Full Text PDFBackground: Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease involving loss of motor neurons, typically results in death within 3-5 years of disease onset. Although roughly 10% of cases can be linked to a specific inherited mutation (e.g.
View Article and Find Full Text PDFIntroduction/aims: Tofersen is approved for the treatment of amyotrophic lateral sclerosis (ALS) due to superoxide dismutase 1 mutations (SOD1-ALS). Here we report serious neurologic adverse events (AEs) that occurred in the tofersen clinical trials in people with SOD1-ALS.
Methods: Serious neurologic AEs of myelitis, radiculitis, aseptic meningitis, and papilledema reported in the tofersen clinical trials are described.
Proc Natl Acad Sci U S A
March 2025
Repeat expansions in the gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with ALS/FTD, we compared healthy controls with ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
February 2025
Background: Despite several studies suggesting a potential oligogenic risk model in amyotrophic lateral sclerosis (ALS), case-control statistical evidence implicating oligogenicity with disease risk or clinical outcomes is limited. Considering its direct clinical and therapeutic implications, we aim to perform a large-scale robust investigation of oligogenicity in ALS risk and in the disease clinical course.
Methods: We leveraged Project MinE genome sequencing datasets (6711 cases and 2391 controls) to identify associations between oligogenicity in known ALS genes and disease risk, as well as clinical outcomes.
Ann Clin Transl Neurol
April 2025
Objective: We performed a pilot screen to assess the utility of the NULISA™ (Nucleic-acid-Linked Immuno-Sandwich Assay) platform in the identification of amyotrophic lateral sclerosis (ALS) biomarkers.
Methods: Plasma from 86 individuals (48 ALS, 18 asymptomatic C9orf72 repeat expansion carriers (AsymC9), and 20 healthy controls) was analyzed via a multiplexed NULISA™ assay that includes 120 neurodegeneration-associated proteins. Statistical analysis of NULISA™ results was performed to identify proteins differentially expressed in plasma and their correlation with disease-associated parameters.
Background And Objectives: Telemedicine has become a mainstay of ALS clinical care, but there is currently no standardized approach for assessing and tracking changes to the neurologic examination in this format. The goal of this study was to create a standardized telemedicine-based motor examination scale to objectively and reliably track ALS progression and use Rasch methodology to validate the scale and improve its psychometric properties.
Methods: A draft telemedicine examination scale with 25 items assessing movement in the bulbar muscles, neck, trunk, and extremities was created by an ALS expert panel, incorporating input from patient advisors.
Sex is an important covariate in all genetic and epigenetic research due to its role in the incidence, progression and outcome of many phenotypic characteristics and human diseases. Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a sex bias towards higher incidence in males. Here, we report for the first time a blood-based epigenome-wide association study meta-analysis in 9274 individuals after stringent quality control (5529 males and 3975 females).
View Article and Find Full Text PDFLancet Neurol
September 2024
Acta Neuropathol
February 2024
The aggregation, mislocalization, and phosphorylation of TDP-43 are pathologic hallmarks of several neurodegenerative diseases and provide a defining criterion for the neuropathologic diagnosis of Limbic-predominant Age-related TDP-43 Encephalopathy (LATE). LATE neuropathologic changes (LATE-NC) are often comorbid with other neurodegenerative pathologies including Alzheimer's disease neuropathologic changes (ADNC). We examined whether TDP-43 regulated cryptic exons accumulate in the hippocampus of neuropathologically confirmed LATE-NC cases.
View Article and Find Full Text PDFSci Transl Med
February 2024
Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD.
View Article and Find Full Text PDFLion's Mane ( has historically been used as traditional medicine in Asia and Europe for its potential benefits in fighting infection and cancer. It has gained interest in the neurodegenerative disease field because of its mechanisms of action; these include anti-inflammation, neuroprotection, and promoting neurite growth demonstrated in various cell and animal models. A very small, double-blind, placebo-controlled trial in patients with mild cognitive impairment showed a temporary improvement in cognitive function; this finding has yet to be replicated.
View Article and Find Full Text PDFAmyotroph Lateral Scler Frontotemporal Degener
February 2024
Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts.
View Article and Find Full Text PDFFunctional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of protein synthesis from cryptic exon transcripts has not been explored.
View Article and Find Full Text PDFRepeat expansions in the gene are the most common genetic cause of amyotrophic lateral sclerosis and familial frontotemporal dementia (ALS/FTD). To identify molecular defects that take place in the dorsolateral frontal cortex of patients with ALS/FTD, we compared healthy controls with ALS/FTD donor samples staged based on the levels of cortical phosphorylated TAR DNA binding protein (pTDP-43), a neuropathological hallmark of disease progression. We identified distinct molecular changes in different cell types that take place during FTD development.
View Article and Find Full Text PDF