C9orf72-associated amyotrophic lateral sclerosis (c9ALS) is caused by an intronic GC repeat expansion that leads to toxic RNA transcripts and dipeptide repeat proteins (DPRs). A clinical trial using the antisense oligonucleotide (ASO) BIIB078 to target these transcripts was discontinued after failing to provide clinical benefit. Here, we determine the extent of target engagement in the central nervous system (CNS) and elucidate pharmacodynamic cerebrospinal fluid (CSF) biomarkers following treatment.
View Article and Find Full Text PDFStaphylococcal nuclease Tudor domain containing 1 (SND1) protein is an oncogene that 'reads' methylarginine marks through its Tudor domain. Specifically, it recognizes methylation marks deposited by protein arginine methyltransferase 5 (PRMT5), which is also known to promote tumorigenesis. Although SND1 can drive hepatocellular carcinoma (HCC), it is unclear whether the SND1 Tudor domain is needed to promote HCC.
View Article and Find Full Text PDFis an oncogenic chromatin reader that is frequently overexpressed in human tumors and associated with poor prognosis. However, is rarely mutated, duplicated, or rearranged in cancer. This raises questions about how is regulated and what changes in its regulation are responsible for its overexpression.
View Article and Find Full Text PDFConditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24 metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24 gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models.
View Article and Find Full Text PDFSomatic mutations affecting CREBBP and EP300 are a hallmark of diffuse large B-cell lymphoma (DLBCL). These mutations are frequently monoallelic, within the histone acetyltransferase (HAT) domain and usually mutually exclusive, suggesting that they might affect a common pathway, and their residual WT expression is required for cell survival. Using in vitro and in vivo models, we found that inhibition of CARM1 activity (CARM1i) slows DLBCL growth, and that the levels of sensitivity are positively correlated with the CREBBP/EP300 mutation load.
View Article and Find Full Text PDFBackground And Aims: How Wnt signaling is orchestrated in liver regeneration and tumorigenesis remains elusive. Recently, we identified transmembrane protein 9 (TMEM9) as a Wnt signaling amplifier.
Approach And Results: TMEM9 facilitates v-ATPase assembly for vesicular acidification and lysosomal protein degradation.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide, due in part to the propensity of lung cancer to metastasize. Aberrant epithelial-to-mesenchymal transition (EMT) is a proposed model for the initiation of metastasis. During EMT cell-cell adhesion is reduced allowing cells to dissociate and invade.
View Article and Find Full Text PDFBackground & Aims: Aberrantly high expression of TRIM24 occurs in human cancers, including hepatocellular carcinoma. In contrast, TRIM24 in the mouse is reportedly a liver-specific tumour suppressor. To address this dichotomy and to uncover direct regulatory functions of TRIM24 in vivo, we developed a new mouse model that lacks expression of all Trim24 isoforms, as the previous model expressed normal levels of Trim24 lacking only exon 4.
View Article and Find Full Text PDFUnlabelled: Functions of p53 during mitosis reportedly include prevention of polyploidy and transmission of aberrant chromosomes. However, whether p53 plays these roles during genomic surveillance in vivo and, if so, whether this is done via direct or indirect means remain unknown. The ability of normal, mature hepatocytes to respond to stimuli, reenter the cell cycle, and regenerate liver mass offers an ideal setting to assess mitosis in vivo.
View Article and Find Full Text PDFGene duplication is a powerful driver of evolution. Newly duplicated genes acquire new roles that are relevant to fitness, or they will be lost over time. A potential path to functional relevance is mutation of the coding sequence leading to the acquisition of novel biochemical properties, as analyzed here for the highly homologous paralogs Foxa1 and Foxa2 transcriptional regulators.
View Article and Find Full Text PDFSelf-renewing embryonic stem (ES) cells have an exceptional need for timely biomass production, yet the transcriptional control mechanisms responsible for meeting this requirement are largely unknown. We report here that Ronin (Thap11), which is essential for the self-renewal of ES cells, binds with its transcriptional coregulator, Hcf-1, to a highly conserved enhancer element that previously lacked a recognized binding factor. The subset of genes bound by Ronin/Hcf-1 function primarily in transcription initiation, mRNA splicing, and cell metabolism; genes involved in cell signaling and cell development are conspicuously underrepresented in this target gene repertoire.
View Article and Find Full Text PDFUnlabelled: The p53 family of proteins regulates the expression of target genes that promote cell cycle arrest and apoptosis, which may be linked to cellular growth control as well as tumor suppression. Within the p53 family, p53 and the transactivating p73 isoform (TA-p73) have hepatic-specific functions in development and tumor suppression. Here, we determined TA-p73 interactions with chromatin in the adult mouse liver and found forkhead box O3 (Foxo3) to be one of 158 gene targets.
View Article and Find Full Text PDFCatenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C.
View Article and Find Full Text PDFAberrant expression of the alpha-fetoprotein (AFP) gene is a diagnostic tumor marker of hepatocellular carcinoma. We find that AFP gene expression is repressed by the TP53 family member p73 during normal hepatic development and when p73alpha or p73beta is introduced into cultured hepatoma cells that express AFP. Transient co-transfection of p53 family members showed that p53 and transactivating (TA)-p73, but not TA-p63, repress endogenous AFP transcription additively or independently.
View Article and Find Full Text PDFWe performed chromatin immunoprecipitation (ChIP) analyses of developmentally staged solid tissues isolated from wild-type and p53-null mice to determine specific histone N-terminal modifications, histone-modifying proteins, and transcription factor interactions at the developmental repressor region (-850) and core promoter of the hepatic tumor marker alpha-fetoprotein (AFP) gene. Both repression of AFP during liver development and silencing in the brain, where AFP is never expressed, are associated with dimethylation of histone H3 lysine 9 (DiMetH3K9) and the presence of heterochromatin protein 1 (HP1). These heterochromatic markers remain localized to AFP during developmental repression but spread to the upstream albumin gene during silencing.
View Article and Find Full Text PDFWe purified the oncoprotein SnoN and found that it functions as a corepressor of the tumor suppressor p53 in the regulation of the hepatic alpha-fetoprotein (AFP) tumor marker gene. p53 promotes SnoN and histone deacetylase interaction at an overlapping Smad binding, p53 regulatory element (SBE/p53RE) in AFP. Comparison of wild-type and p53-null mouse liver tissue by using chromatin immunoprecipitation (ChIP) reveals that the absence of p53 protein correlates with the disappearance of SnoN at the SBE/p53RE and loss of AFP developmental repression.
View Article and Find Full Text PDF