Photoacid-macroion assemblies: how photo-excitation switches the size of nano-objects.

Nanoscale

Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, and Bavarian Polymer Institute Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, D-91058 Erlangen, Germany.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electrostatic self-assembly of photoacids with oppositely charged macroions yields supramolecular nano-objects in aqueous solutions, whose size is controlled through light irradiation. Nano-assemblies are formed due to electrostatic attractions and mutual hydrogen bonding of the photoacids. Irradiation with UV light leads to the deprotonation of the photoacid and, consequently, a change in particle size. Overall, the hydrodynamic radii of the well-defined photoacid-macroion nano-objects lie between 130 and 370 nm. For a set of photoacids, we determine the acidity constants in the ground and excited state, discuss the sizes of photoacid-macroion nano-objects (by dynamic and static light scattering), their composition and the particle shapes (by small-angle neutron scattering), and relate their charge characteristics to size, structure and shape. We investigate the association thermodynamics and relate nanoscale structures to thermodynamics and, in turn, thermodynamics to molecular features, particularly the ionization energy of the photoacid hydroxyl group proton. Structure-directing effects completely differ from those for previously investigated systems, with hydrogen bonding and entropic effects playing a major role herein. This combined approach allows developing a comprehensive understanding of assembly formation and photo-response, anchored in molecular parameters (p, ionization energy, substituent group location), charge characteristics, and the association enthalpy and entropy. This fundamental understanding again paves the way for tailoring application solutions with novel photoresponsive materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr04570fDOI Listing

Publication Analysis

Top Keywords

hydrogen bonding
8
photoacid-macroion nano-objects
8
charge characteristics
8
ionization energy
8
photoacid-macroion assemblies
4
assemblies photo-excitation
4
photo-excitation switches
4
size
4
switches size
4
nano-objects
4

Similar Publications

The direct α-α coupling of 3-pyrrolyl boron dipyrromethenes (BODIPYs) affords helical near-infrared (NIR)-active dimers in one step via a radical Pd-catalyzed process. X-ray analysis reveals Z-type helical packing stabilized by π-π stacking and hydrogen-bonding interactions. These dimers showed pronounced bathochromic absorption shifts compared to monomers and solvent-dependent charge-transfer bands up to 905 nm with fluorescence quenching.

View Article and Find Full Text PDF

We investigated primary and secondary geometric isotope effects (H, D, T) on charge-inverted hydrogen bonds (CIHB) and dihydrogen bonds (DHB) using nuclear-electronic orbital density functional theory (NEO-DFT). The dianionic but electrophilic boron cluster [BH] served as a bonding partner, exhibiting a negatively polarized hydrogen atom in the BH bond. CIHB systems included interactions with Lewis acids (AlH, BH, GaH) and carbenes (CF, CCl, CBr), while DHBs were analyzed with NH, HF, HCl, and HBr.

View Article and Find Full Text PDF

This study investigates the unique syneresis (self-shrinking) behavior of N-Terminally Fmoc-protected amino acid, Fmoc-hPhe-OH (Fmoc-homo-L-phenylalanine, abbreviated in this work as hF)-based hydrogel, and its potential in environmental remediation applications. Fmoc-hPhe-OH (hF) forms a hydrogel in 50 mM phosphate buffer (PB) of pH 7.4.

View Article and Find Full Text PDF

Strong intermolecular interactions facilitate the formation of efficient ion transport channels, which, in turn, significantly boost the performance of anion exchange membranes (AEMs). Herein, 9-anthracene methanol with both π-π stacking and hydrogen bonding intermolecular forces is used as a bifunctional unit to synthesize high-performance AEMs through the Friedel-Crafts superacid catalytic reaction for the first time. The π-π stacking in the bifunctional units can induce hydrophilic pyridine cations to aggregate, and the hydrogen bonding can provide transport sites for OH and water molecules in the hydrophobic component.

View Article and Find Full Text PDF

Molecular basis for the recognition of low-frequency polyadenylation signals by mPSF.

Nucleic Acids Res

September 2025

Department of Biological Sciences, Columbia University, New York, NY 10027, United States.

The 3'-end cleavage and polyadenylation of pre-mRNAs is dependent on a key hexanucleotide motif known as the polyadenylation signal (PAS). The PAS hexamer is recognized by the mammalian polyadenylation specificity factor (mPSF). AAUAAA is the most frequent PAS hexamer and together with AUUAAA, the second most frequent hexamer, account for ∼75% of the poly(A) signals.

View Article and Find Full Text PDF