98%
921
2 minutes
20
Kidneys are among the most structurally complex organs in the body. Their architecture is critical to ensure proper function and is often impacted by diseases such as diabetes and hypertension. Understanding the spatial interplay between the different structures of the nephron and renal vasculature is crucial. Recent efforts have demonstrated the value of three-dimensional (3D) imaging in revealing new insights into the various components of the kidney; however, these studies used antibodies or autofluorescence to detect structures and so were limited in their ability to compare the many subtle structures of the kidney at once. Here, through 3D reconstruction of fetal rhesus macaque kidneys at cellular resolution, we demonstrate the power of deep learning in exhaustively labelling seventeen microstructures of the kidney. Using these tissue maps, we interrogate the spatial distribution and spatial correlation of the glomeruli, renal arteries, and the nephron. This work demonstrates the power of deep learning applied to 3D tissue images to improve our ability to compare many microanatomical structures at once, paving the way for further works investigating renal pathologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10723390 | PMC |
http://dx.doi.org/10.1101/2023.12.07.570622 | DOI Listing |
Eur Radiol Exp
September 2025
Center for MR-Research, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland.
Background: Fetal MRI is increasingly used to investigate fetal lung pathologies, and super-resolution (SR) algorithms could be a powerful clinical tool for this assessment. Our goal was to investigate whether SR reconstructions result in an improved agreement in lung volume measurements determined by different raters, also known as inter-rater reliability.
Materials And Methods: In this single-center retrospective study, fetal lung volumes calculated from both SR reconstructions and the original images were analyzed.
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Plastic and Reconstructive Surgery, Keio University School of Medicine, Tokyo, Japan.
In adult mammals and other highly developed animals, incomplete wound healing, scar formation, and fibrosis occur. No treatment for complete tissue regeneration is currently available. However, in mice, at up to 13 days of gestation, early embryonic wounds regenerate without visible scarring.
View Article and Find Full Text PDFMater Today Bio
October 2025
Radboud University Medical Center, Research Institute for Medical Innovation, Department of Medical BioSciences, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.
Severe scarring is an inevitable consequence of large full-thickness skin wounds, often leading to long-term complications that affect patients' well-being and necessitate extended medical interventions. While autologous split-thickness skin grafts remain the clinical standard for wound treatment, they frequently result in contractures, excessive scarring, and the need for additional corrective procedures. To address these challenges, bioengineered skin substitutes capable of promoting efficient healing while reducing complications are highly desirable.
View Article and Find Full Text PDFPrenat Diagn
September 2025
Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
Objective: To address the current lack of a prenatal classification system for fetal lower limb anomalies, we developed and evaluated the PRELLIM (PREnatal Lower LIMb impairment) classification.
Method: A systematic literature review was conducted to identify existing classifications. Based on sonographic features, we developed the PRELLIM classification and applied it to a retrospective cohort of fetuses with isolated lower limb anomalies assessed between 2007 and 2024 at Amsterdam UMC's fetal medicine unit.