98%
921
2 minutes
20
Introduction: Curtis Bay (CB) is an environmental justice (EJ) community in South Baltimore. With a high concentration of industrial polluters and compounding non-chemical stressors, CB has experienced socioeconomic, quality of life, and health burdens for over 100 years. Today, these polluters include the open-air CSX Coal Terminal, waste-to-energy incinerators, and heavy diesel traffic through residential areas. The Community of Curtis Bay Association, Free Your Voice, and South Baltimore Community Land Trust are local organizations enacting a vision for equitable, healthy, and community-led development without industrial encroachment. In response to community-identified EJ concerns and an explosion at the CSX Coal Terminal, CB community groups partnered with academic researchers to develop a community-driven hyperlocal air monitoring and capacity building approach. This paper describes this approach to characterizing hyperlocal air quality in CB, building bridges between community residents and regulatory agencies, and nurturing a cohesive and effective community-academic partnership toward EJ.
Methods: Using hyperlocal air monitoring, we are collecting real-time air pollution (particulate matter, black carbon, and ground-level gas species) and meteorological data from 15 low-cost sensors in residential and industrial areas of CB. We also use trail cameras to record activities at the CSX Coal Terminal. We merge air pollution and industrial activity data to evaluate the following: overall air quality in CB, multi-air pollutant profiles of elevated events, spatiotemporal changes in air quality in the community, patterns of industrial activity, and potential correlations between air quality and observed industrial activity. Members of our partnership also lead a high school course educating students about the history and ongoing efforts of the EJ movement in their community. Students in this course learn how to employ qualitative and quantitative data collection and analysis methods to bring scientific support to community EJ concerns.
Results And Discussion: Our hyperlocal air monitoring network and community-academic partnership are continuing to evolve and have already demonstrated the ability to respond to community-identified EJ issues with real-time data while developing future EJ leaders. Our reflections can assist other community and academic groups in developing strong and fruitful partnerships to address similar EJ issues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720608 | PMC |
http://dx.doi.org/10.3389/fepid.2023.1198321 | DOI Listing |
Environ Res
September 2025
Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.
Background: Fine particulate matter (PM) has been previously linked to cardiovascular diseases (CVDs). PM is a mixture of components, each of which has its own toxicity profile which are not yet well understood. This study explores the relationship between long-term exposure to PM components and hospital admissions with CVDs in the Medicare population.
View Article and Find Full Text PDFEnviron Res
August 2025
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14853, USA. Electronic address:
Distributed air quality monitoring networks using low-cost sensors (LCS) promise to empower policymakers and citizens to enhance air quality management by developing tailored interventions. However, relatively few studies have investigated how to extract information on emission sources from citywide, fixed-site LCS networks, especially in terms of non-traffic sources. Commonly measured NO concentrations are mostly indicative of traffic sources and PM concentrations usually exhibit low diurnal variability.
View Article and Find Full Text PDFJ Cheminform
May 2025
Department of Informatics and Systems, University of Murcia, IMIB-Pascual Parrilla, Murcia, Spain.
Persistent air quality pollution poses a serious threat to human health, and is one of the action points that policy makers should monitor according to the Directive 2008/50/EC. While deploying a massive network of hyperlocal sensors could provide extensive monitoring, this approach cannot generate geospatial continuous data and present several challenges in terms of logistics. Thus, developing accurate and trustable expert systems based on chemistry transport models is a key strategy for environmental protection.
View Article and Find Full Text PDFInt J Biometeorol
April 2025
Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ, USA.
The negative health impacts of extreme heat exposure can be mitigated by incorporating hyperlocal biometeorological observations into heat action planning, emergency responses, and heat-reducing urban design. A significant portion of outdoor human heat exposure is radiative, but it is often overlooked due to the absence of affordable, accurate, and user-friendly sensors. We developed a two cylinder anemometer and radiometer (CARla) consisting of unheated and heated gray components, which quantifies wind speed and the total radiation absorbed by the human body.
View Article and Find Full Text PDFEnviron Sci Technol
February 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton L8S 4L8, Canada.
Wildfires emit large amounts of polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. As PAHs emitted from anthropogenic sources are known to accumulate in urban surface grime present on building exteriors and windows, we hypothesized that PAH-containing wildfire smoke plumes could similarly increase PAH grime loadings. To explore this hypothesis, we coupled analysis of PAHs in grime samples collected from August to November 2021 in two historically smoke-affected Canadian cities, Calgary and Kamloops, with contemporaneous field- and model-based indicators of wildfire influence.
View Article and Find Full Text PDF