Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Analysis of mutational signatures is a powerful approach for understanding the mutagenic processes that have shaped the evolution of a cancer genome. To evaluate the mutational signatures operative in a cancer genome, one first needs to quantify their activities by estimating the number of mutations imprinted by each signature.

Results: Here we present SigProfilerAssignment, a desktop and an online computational framework for assigning all types of mutational signatures to individual samples. SigProfilerAssignment is the first tool that allows both analysis of copy-number signatures and probabilistic assignment of signatures to individual somatic mutations. As its computational engine, the tool uses a custom implementation of the forward stagewise algorithm for sparse regression and nonnegative least squares for numerical optimization. Analysis of 2700 synthetic cancer genomes with and without noise demonstrates that SigProfilerAssignment outperforms four commonly used approaches for assigning mutational signatures.

Availability And Implementation: SigProfilerAssignment is available under the BSD 2-clause license at https://github.com/AlexandrovLab/SigProfilerAssignment with a web implementation at https://cancer.sanger.ac.uk/signatures/assignment/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10746860PMC
http://dx.doi.org/10.1093/bioinformatics/btad756DOI Listing

Publication Analysis

Top Keywords

mutational signatures
16
signatures individual
12
assigning mutational
8
individual samples
8
individual somatic
8
somatic mutations
8
cancer genome
8
signatures
6
sigprofilerassignment
5
individual
4

Similar Publications

The European Health Data Space (EHDS) will help researchers use health data across EU Member States (MS). Currently, cross-border research faces heterogeneous data access processes. Using a real-world use case, this paper analyses challenges and opportunities brought by the upcoming implementation of the EHDS, assessing the situation before and after the regulation comes into force.

View Article and Find Full Text PDF

Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther

September 2025

State Key Laboratory of Molecular Oncology & Department of Medical Oncology & Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Small-cell lung cancer (SCLC), an aggressive neuroendocrine tumor strongly associated with exposure to tobacco carcinogens, is characterized by early dissemination and dismal prognosis with a five-year overall survival of less than 7%. High-frequency gain-of-function mutations in oncogenes are rarely reported, and intratumor heterogeneity (ITH) remains to be determined in SCLC. Here, via multiomics analyses of 314 SCLCs, we found that the ASCL1/MKI67 and ASCL1/CRIP2 clusters accounted for 74.

View Article and Find Full Text PDF

Introduction: The definition of Leber's hereditary optic neuropathy (LHON) does not take into account a preclinical phase during which the thickness of retinal nerve fiber layer (RNFL) is increased, prior to optic nerve atrophy, reducing the chances of visual recovery.

Objectives: Search for a metabolomic signature characterizing this preclinical phase and identify biomarkers predicting the risk of LHON onset.

Methods And Results: The blood and tear metabolomic profiles of 90 asymptomatic LHON mutation carriers followed for one year will be explored as a function of RNFL thickness and compared to those of a healthy control.

View Article and Find Full Text PDF

Chronic myeloid leukaemia (CML) accounts for 2% of leukaemias in children and 9% in adolescents. While the BCR::ABL1 fusion gene remains a hallmark across all age groups, emerging evidence suggests that paediatric CML exhibits unique biological and clinical characteristics compared to its adult counterpart. Children often present with more aggressive clinical features and show distinct treatment response patterns.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.

View Article and Find Full Text PDF